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Video Snapshot: Single Image Motion Expansion
via Invertible Motion Embedding

Qianshu Zhu∗, Chu Han∗, Guoqiang Han, Tien-Tsin Wong, and Shengfeng He

Abstract—Unlike images, finding the desired video content in a
large pool of videos is not easy due to the time cost of loading and
watching. Most video streaming and sharing services provide the
video preview function for a better browsing experience. In this
paper, we aim to generate a video preview from a single image.
To this end, we propose two cascaded networks, the Motion
Embedding Network and the Motion Expansion Network. The
Motion Embedding Network aims to embed the spatio-temporal
information into an embedded image, called video snapshot. On
the other end, the Motion Expansion Network is proposed to
invert the video back from the input video snapshot. To hold
the invertibility of motion embedding and expansion during
training, we design four tailor-made losses and a motion attention
module to make the network focus on the temporal information.
In order to enhance the viewing experience, our expansion
network involves an interpolation module to produce a longer
video preview with a smooth transition. Extensive experiments
demonstrate that our method can successfully embed the spatio-
temporal information of a video into one “live” image, which
can be converted back to a video preview. Quantitative and
qualitative evaluations are conducted on a large number of videos
to prove the effectiveness of our proposed method. In particular,
statistics of PSNR and SSIM on a large number of videos show
the proposed method is general, and it can generate a high-quality
video from a single image.

Index Terms—Video Snapshot, Video Expansion, Information
Embedding, Motion Attention

I. INTRODUCTION

Videos can be found everywhere on social media in our
daily life, especially for video sharing services like YouTube
or TikTok. There are so many videos that we cannot easily
browse to the desired video content. Therefore all these video
sharing services provide a video preview function for enhanc-
ing the browsing experience. However, enabling video preview
requires additional storage of 3-second videos, which may
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not be a memory-efficient solution. Various methods convert
a video to a single or a sequence of image(s) to generate
video abstraction [1], [2], [3]. The resulted images may be
representative, but they cannot generate video previews. On
the other hand, some other works [4], [5], [6] are proposed to
make a still image moving by leveraging the inference from
the image itself, but they are independent to the video content.
We then raise a question – can we embed a video into a single
or a few frames? It is believed that an image is unexpandable,
but what if we embed spatio-temporal information as encoding
patterns in the image so that they can be inverted back to the
video?

In this paper, we propose to embed the motion information
of a video into an embedded image. We call this embedded
image “video snapshot”, as shown in Fig. 1(a). The embedded
video snapshot is actually “alive” that it can be decoded to
the input video. Fig. 1(b) demonstrates the restored frames
generated by our proposed method from only one video
snapshot in Fig. 1(a). The PSNR, SSIM and MAE values,
as well as the difference maps, show that the quality of the
restored frames in Fig. 1(b) is extremely high. It has almost
no visual difference comparing with the groundtruth, which is
more than enough for a video.

Our proposed method consists of two major components,
the Motion Embedding Network and the Motion Expansion
Network. The Motion Embedding Network is proposed to
embed motion information into a single image. However, the
complex motion changes make it challenging and it cannot
be naively solved by a common encoder. Thus we propose a
motion attention module to enforce the network concentrates
to the dynamic regions. With the feature maps that convey
the spatio-temporal information, an encoder is introduced to
embed them into the video snapshot. The Motion Expansion
Network, which consists of a decoder and an interpolation
module, is designed to bring the video snapshot back life.
The decoder inverts the embedded image back to the input
frames. However, the decoder alone cannot provide additional
information that does not exist during the encoding process.
Moreover, it is not capable for a lightweight encoder to embed
too much information into only one image. For example, even
the encoder encodes 11 frames into one video snapshot, which
has already pushed the encoder to the limit. The decoder
can give us at most 11 frames, which produces an around
0.3 second video (at 30 FPS). It is too short for a video to
deliver sufficient information with good viewing experience.
Thus, we propose an interpolation module after the decoder
to breakthrough the limit. With the proposed Motion Expan-
sion Network, we can obtain a longer and smoother video
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Fig. 1. Our proposed method encodes spatio-temporal information of the frame sequence into an embedded image (a), called video snapshot. Later, this
video snapshot can be restored back to the video. In (b), images from the first row to the third row of each case are the groundtruth frames, restored frames
from the video snapshot and the difference map of MAE. Note that, since we have to compare the restored frames with the groundtruth frames, the results
in (b) are the direct output from the decoder without interpolation. Our complete outputs with interpolation in GIF format can be found in the supplementary
materials. The PSNR, SSIM and MAE values are shown at the bottom right corner in each corresponding image.

from only one video snapshot. Furthermore, four tailor-made
losses are introduced to guarantee the invertibility of motion
embedding and motion expansion as well as the faithfulness of
the results during the training phase. Our well-trained model
is general enough and can take arbitrary input videos with
no matter large or small motions. We also demonstrate the
application of making a long video preview using concatenated
video snapshots.

We have conducted extensive experiments to both quali-
tatively and quantitatively evaluate our proposed network. An
ablation study is introduced to demonstrate the impact of each
specific component and different settings in our network, e.g.,
how many frames can be compacted into one video snapshot.
A user study is conducted to demonstrate the faithfulness
of our restored videos comparing with the groundtruth. The
complete results including the groundtruth in GIF format can
be found in the supplementary materials. The contributions of
our paper are summarized as follows:

• We propose a general and innovative method to embed
the spatio-temporal information of a video into a video
snapshot, which can be inverted back to a long video with
smooth motion.

• We present a motion attention module to help the network
focus on dynamic regions, which enriches the spatio-
temporal representations of the learned features.

• We develop an interpolation network that predicts arbi-
trary intermediate optical flow between two consecutive
frames. It allows generating a longer and smoother video
preview.

II. RELATED WORK

Given a video, our work aims to generate a video snapshot
which can be inverted back to the video. But currently, there is
no other research shares the same spirit with ours. Therefore,
we discuss the related works on two aspects according to the
sub-goals of our approach, video to image and image to video.
We also discuss related steganography methods as they aim to
embed information in different forms.

A. Video to Image

Video Abstraction: The major purpose and the most related
research field to convert a video to a single or a sequence of
image(s) is video abstraction/summarization. Video abstrac-
tion [1], [3], [7] actually gives a short summary of video
content according to the saliency of video frames. Similar
to video summarization, video highlight methods [8], [9] are
proposed to identify the significant sub-events of the video.

However, the goals of the above methods are different
from ours. Existing video summarization methods aims to find
out the representative frames of the video. In contrast, our
proposed method is designed to hide the spatio-temporal in-
formation into a single image while endows it the invertibility.

Video Compression: Although video compression [10], [11],
[12], [13], [14] is not to compress a video to a single image,
it reduces the size of the video that shares a similar spirit of
ours. However, the proposed method is significantly different
from video compression due to the focus of the intermediate
representation of the video. Our work generates a unique type
of image representation, video snapshot, that can be viewed,
printed, and processed in different applications like printing
on a paper for animation purposes.
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Fig. 2. Overall architecture of our proposed method. The Motion Embedding Network aims to encode a sequence of consecutive frames I into a video
snapshot by a motion attention module and an encoder. The Motion Expansion Network then tries to make the video snapshot alive and generates the output
sequence O by a decoder and an interpolation network. Note that, with the interpolation network, the number of output frames O will be much larger than
the original input sequence I. This leads to a much longer and smoother video than the original one.

B. Image to Video

Video Generation: Generating videos from a single image or
very limited examples is challenging but interesting. Existing
works have already shown a lot of fascinating effects, i.e.,
generating video motions, cartoon/sketch animations, human
poses, etc.

Horry et al. [15] propose an early attempt, “Tour Into
the Picture”, for making animations from 2D pictures or
photographs. Motion texture techniques [16], [5], [17] are
proposed to synthesize the animated motions of a still image
with higher image quality and resolution. Joshi et al. [6]
generate “Cliplets”, which is a stable video with looped small
motion. It is obtained from a handheld video by interactively
segmenting the regions of the desired motion. Some meth-
ods [18], [19] animate humans or human-like subjects by
utilizing the skeleton representations. Dvoroznák et al. [20]
present an example-based method for generating cartoon ani-
mation which can preserve the visual appearance and stylized
motion. Xu et al. [4] animate animal motions from a still
image by rearranging the motion snapshots of repeated animals
in the image. Su et al. [21] propose a video-driven dynamic
deformation method which allows users to interactively bring
static drawings to life. Thanks to the advanced feature rep-
resentation and generation of the neural network, more and
more learning-based techniques are proposed for image to
video generation with higher quality, i.e., facial animation [22],
cinemagraph [23], 3D animatable character [24], 3D human
bodies [25], etc. Although the above methods can show
visually pleasing effects, their objective is not to generate an
invertible video snapshot.

Video Prediction: Video prediction aims to predict the
following few frames of a given frame [26], [27], [28], [29],
[30], [31]. It shares the same spirit of ours to expand a single
image to a short video sequence. However, video prediction
depends solely on the learned spatio-temporal patterns, which
is impossible to recover the original video in high-quality.

On the contrary, the proposed method embeds spatio-temporal
patterns into a single image, leading to high-quality video
recovery.

C. Steganography
Steganography aims to hide confidential information within

different information carriers such as text, audio, and IP data-
gram. The most widely adopted media is digital image. Early
image steganography involves adjusting the least significant
bits (LSBs) of each image pixel depending on the bits of the
secret message [32], [33]. However, LSB methods produce
image perturbations with fixed filters, leading to easily de-
tected embedding. Latest image steganography leverages deep
network for better information hiding. Zhu et al. [34] propose
to hide secret messages within an image using deep networks
by considering noise interference, while Wengrowski et al.[35]
embed information in light field images. Other than image
steganography, Yang et al. [36] aim to hide a video in an
audio without compromising of the audio fidelity. Sharing a
similar spirit, we explores the possibility of hiding a video in
an image.

III. PROPOSED METHOD

Our proposed network shown in Fig. 2 consists of two sub-
networks, the Motion Embedding Network and the Motion Ex-
pansion Network. The Motion Embedding Network (discussed
in Sec. III-A) takes a consecutive frame sequence from a video
as the inputs and aims to encode the whole frame sequence
into an embedded image, called “video snapshot”. The Motion
Expansion Network (discussed in Sec. III-B) is proposed to
make video snapshot alive again and generate a longer and
smoother video than the original one.

A. Motion Embedding Network
Given a sequence of consecutive frames I = {Ii|i =

0, 1...k} from a video, we proposed the Motion Embedding
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Fig. 3. Network structure of Motion Attention Module.

Network to encode the color changes and motions along the
temporal domain into a video snapshot E. The complex color
and motion changes make it hard to achieve by using a simple
encoder. Thus, we propose the Motion Attention Module to
find out where the motions happen. Then we cooperate the
motion attention map with an encoder to embed the spatio-
temporal information into the video snapshot.

1) Motion Attention Module: To capture the motions along
the frame sequence, we propose a motion attention mecha-
nism. Fig. 3 shows the network structure of motion attention
module. For each input frame Ii, we first extract the spatial
features Si by an independent branch consists of two convo-
lutional layers. The first one is utilized to extract the spatial
image features. The second one is a 1×1 convolutional layer to
reduce the dimension of the channel to 1. Since finding motion
mainly relies on local matching, we find two convolutional
layers achieve a good balance between the performance and
computational cost. Now the extracted feature map of each
branch only focuses on the spatial feature of each frame
independently. We let the network further pays attention to
the motion along the temporal domain by building up the
connections of all frames. Note that, shown in Fig. 3, we apply
a Jet colormap on attention map for better visualization effect.
Thus, we concatenate the feature maps from all branches and
feed them into a Softmax layer as follows:

Ti,j =
exp (Si,j)∑k
i=1 exp (Si,j)

. (1)

Here, the j-th pixel in Ti is calculated by the Softmax of
the pixels at the same coordinate over the time axis. Then
a slicing layer is applied to cut the feature maps into k 1-
channel motion attention maps T = {Ti|i = 0, 1...k}. The
skip connection [37] of each branch is introduced to monitor
the motion attention map using the spatial information by
an element-wise multiplication. Lastly, we can obtain the
complete spatio-temporal information by concatenating all
the motion attention maps. Fig. 4 visualizes two consecutive
motion attention maps by directly drawing them onto their
reference frames. We can observe that the visualized results
successfully convey the attentions on motions in the following
frames.

2) Encoder: Following the motion attention module, the
encoder is introduced to embed the spatio-temporal informa-
tion into the video snapshot. It contains two convolutional
blocks, four residual blocks [38] and two deconvolutional

Fig. 4. Motion attention maps on two consecutive frames. We visualize the
motion attention maps (mapped to color space) by directly drawing it onto
their reference frames.

(a) GT (b) video snapshot
Fig. 5. Visualization of video snapshot. (a) is the groundtruth and (b) is video
snapshot generated by Motion Embedding Network. When we zoom in the
images, motion textures can be observed at the bottom row of (b). We can
easily observe that the patterns in static and moving areas are different, like
the motion textures around the girl.

blocks. Additionally, the skip connections preserve much
more low-level features and suppress the blurring artifacts.
The output embedded image E carries not only the spatial
information but also the temporal information. Fig. 5(b) shows
the video snapshot and its blow up area. Comparing with the
groundtruth image in Fig. 5(a), they are almost visually the
same except some barely visible patterns. When we zoom into
the yellow box, regular patterns are shown more clearly in
Fig. 5(b). Here we call these pattern the “motion textures”,
where the spatio-temporal information hides. It reveals that
our proposed Motion Embedding Network identifies motions,
and they are successfully encoded into the video snapshot. In
our experiments, we set the number of input frames k = 5 due
to its best visual quality. Some discussions on the numbers of
embedding frames are presented in Sec. IV-C.

B. Motion Expansion Network

To bring the video snapshot back to live, we propose the
Motion Expansion Network. It consists of two components,
a decoder and an interpolation module. The decoder is intro-
duced to restore the video snapshot back to the original frame
sequences. Although it can decode high quality frames, the
restored video is still as short as the input one. Because it is
impractical for an encoder to compact so much information
into one single image, especially for abrupt motions. Also,
a too short video cannot offers a good viewing experience.
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(a) GT (b) Decoded image
Fig. 6. Demonstration of the decoded image output by the decoder. Here,
we only select one frame from the output sequence for a simple illustration.
The difference between the groundtruth image (a) and decoded image (b) is
visually imperceptible. The SSIM and PSNR values between (a) and (b) are:
SSIM:0.9933 PSNR:40.166.

In order to obtain a longer video, a pre-trained interpolation
module is proposed after the decoding process.

1) Decoder: The decoder is made up by eight residual
blocks, one flat convolutional layer, and skip connections
across different layers. It takes the video snapshot as input
and output a frame sequence. Fig. 6(b) shows a selective
output frame from the decoder. When comparing it with the
groundtruth frame in Fig. 6(a), the visual difference between
them is completely unobservable. SSIM and PSNR values
also show that the decoder alone has already provided the
capacity to restore the high quality frame sequence from
only one embedded image. Training the decoder together with
the Motion Embedding Network, we can transfer a video to
a video snapshot and vise versa. To hold the invertibility
training, we tailored four losses.

The following losses are designed for the training of Motion
Embedding Network with the decoder. They are utilized to
measure how good the Motion Embedding Network can hide
spatio-temporal information into the embedded image, and
how good the decoder can restore the original frames back.

Given a sequence of consecutive frames I = {Ii|i =
0, 1...k} from a video, the Motion Embedding Network gener-
ates the embedded image E. The decoder restores the frames
I ′ = {I ′i|i = 0, 1...k}.

a) Restoration Loss: We introduce an L2 loss to model
how good the network can restore frames from the embedded
images.

Lr =
1

N

N∑
j=1

k∑
i=1

‖I ′i,j − Ii,j‖2, (2)

where N is the total number of the videos. k is the number
of frames in each video. Ii,j denotes to the i-th frame in the
j-th video.

b) Embedding Loss: Since we want the video snapshot
can be the representative image of the video. We select
the intermediate frame as the reference image of the video
snapshot. The embedding loss is introduced to ensure the color
consistency between the video snapshot and the reference
image. The reason why we choose the intermediate frame of
the frame sequence is that we want to balance the motion
differences of the reference image and the first/last frame.
We do not want the difference between the reference image
and any other frame to be too large or too small. Thus, the

embedding loss is defined as follows:

Le =
1

N

N∑
j=1

‖max{|Ej − Īj |,Mθ}‖1, (3)

where Mθ is a threshold matrix with the same size of the image
resolution that filled with constant θ. Īj is the intermediate
frame in the j-th video. We loose the color difference to
obtain a larger solution space for spatio-temporal information
encoding. Empirically, we set θ = 90.

c) Perceptual Loss: To guarantee a fine and sharp video
snapshot, we introduce a perceptual loss [40] to enforce the
perceptual similarity, e.g., sharpness, global contrast, etc.

Lp =
1

N

N∑
j=1

‖φ(Ej)− φ(Īj)‖2, (4)

where φ denotes the conv4 4 features of an ImageNet pre-
trained VGG-19 model [41].

d) Unimodal Loss: Since the attention maps might go
astray if we left it uncontrolled. Also, we observe that without
unimodal loss, the pixel values of temporal attention map
T k+1

2
are close to 1 while the others are almost 0. That is

to say, the other frames except the intermediate one do not
contribute to the Motion Embedding Network when generating
the video snapshot. So we define the unimodal loss to avoid
this unbalance problem as follows:

Lu =
1

N

N∑
j=1

k∑
i=1

max{Ti,j � Tk−i,j − T 2
k+1
2 ,j

, 0}, (5)

where T is the attention map defined in Sec. III-A. Note that,
we let k be an odd number in our paper so that we can acquire
exactly one intermediate frame from one video.

Last, our final objective function is a linear combination of
all losses:

L = αrLr + αeLe + αpLp + αuLu (6)

The loss weights are set empirically as αr = 3, αe = 1, αp =
1, and αu = 1.

2) Interpolation Module: Since we want to breakthrough
the length of the video from the decoder. We propose an
interpolation module which can achieve multiple frame inter-
polation. Given two consecutive frames I1 and I2, we aim to
interpolate an frame It at arbitrary time t ∈ (1, 2). We propose
an interpolation network to estimate the intermediate optical
flow, Ft→1 and Ft→2, at time t. Then the interpolated frame
can be computed by a warping function as follows:

It = t�W (I1, Ft→1) + (1− t)�W (I2, Ft→2), (7)

where � denotes the element-wise multiplication. W (·, ·)
is the backward warping. Here, we consider the temporal
consistency by weighting the two warped images. When the
time t is closer to 1, I1 should response more contribution and
vise versa. Moreover, the warping function is differentiable.

We design the interpolation network using a U-Net archi-
tecture [37] as shown in Fig. 7. It takes (I1, I2, F̂t→1,
F̂t→2, Ît→1, Ît→2) as the inputs and returns the refined flow
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Fig. 7. Network structure of interpolation network. The PWC-Net [39] is used to calculate the optical flow. The second network is the proposed interpolation
network. The interpolated frame can be obtained by warping according to the intermediate flow predicted by the interpolation network.

(a) I1 (input) (b) I2 (input)

(c) I1.33 (interpolation) (d) I1.66 (interpolation)

(e) Ft→1(t = 1.33) (f) Ft→2(t = 1.33)

(g) Ft→1(t = 1.66) (h) Ft→2(t = 1.66)

Fig. 8. Multiple frames interpolation. Given two input images (a) and (b),
our proposed interpolation module can predict inter-frame at arbitrary time t.
(c) and (d) are the results at timesteps t = 1.33 and t = 1.66 respectively.
(e)-(h) are bi-directional optical flow generated by our interpolation network
at timesteps t = 1.33 and t = 1.66, respectively.

Ft→1 and Ft→2. F̂t→1 and F̂t→2 are the approximated flow
at time t which are calculated as follows:

F̂t→1 = −(1− t)tF1→2 + t2F2→1

F̂t→2 = (1− t)2F1→2 − t(1− t)F2→1 (8)

where F1→2 and F2→1 are the bi-directional optical flow of
I1and I2. They are calculated by PWC-Net [39]. Ît→1 and
Ît→2 denote two approximated images warped by F̂t→1 and
F̂t→2 respectively. With the refined intermediate flow, we can
obtain the interpolation frame by the warping function in Eq. 7.

Fig. 8 (c) & (d) shows the interpolation results when t = 1.33
and t = 1.66 respectively. Fig. 8 (e)-(h) are the bi-directional
flow generated by our interpolation network.

a) Training: To train the interpolation network, we intro-
duce several losses. Given two input images I1 and I2, we have
a set of groundtruth intermediate frames {Iti |i = 1, ..., N} and
the interpolation frames {Îti |i = 1, ..., N}. Here, the times
{ti|i = 1, ..., N} are in a uniform distribution. First, an L1

loss is introduced to measure the interpolation frames Iti with
the groundtruth Îti .

Ll1 =
1

N

N∑
i=1

‖Îti − Iti‖1. (9)

We also introduce a perceptual loss [40] to measure the
perceptual differences and to ensure the image sharpness.

Lp =
1

N

N∑
i=1

‖φ(Îti)− φ(Iti)‖2, (10)

where φ denotes the conv4 4 features of an ImageNet pre-
trained VGG-19 model [41].

An additional Laplacian pyramid loss [42], [43] is intro-
duced to provide the measurement from local to global features
along the Laplacian pyramid. It is defined as follows:

Llap =
1

N

N∑
i=1

5∑
j=1

2i−1‖Lj(Îti)− Lj(Iti)‖1. (11)

Here, we conduct a five-level Laplacian pyramid. The deeper
levels in the pyramid make stronger contributions due to the
larger spatial support. We trained the interpolation network
using the Adobe240-fps [44]. We place the interpolation
module after the decoder. Then our proposed Motion Expan-
sion Network can breakthrough the limit of the information
conveyed by the embedded image and obtain a much longer
and smoother video.

IV. EXPERIMENTS

In this section, we conduct several experiments to quan-
titatively and qualitatively evaluate our method. Since we
are the first one trying to embed spatio-temporal information
into one embedded image which can be converted back to
live. We mainly focus on the analysis of the importance of
each proposed component and the intuition at every specific
design of our approach. Ablation studies are demonstrated in
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(a) Groundtruth

20.422/ 0.685

(b) w/o perceptual

24.438/ 0.917

(c) w/o embedding

25.073/ 0.924

(d) Full losses

Fig. 9. Visualization of the embedded image using two embedding related losses. Artifacts can be found at the blow up areas of (b) and (c). The embedded
image generated from the complete model with full losses in (d) has the least artifacts and are more similar with the groundtruth image (a).

TABLE I
STATISTICS OF RESTORED FRAMES ON DIFFERENT NETWORK

CONFIGURATIONS.

Configurations PSNR SSIM

w/o perceptual loss 38.498 0.9752
w/o embedding loss 39.113 0.9793
w/o unimodal loss 37.823 0.9733

w/o attention module 36.278 0.9612
Shared weights (attention) 36.372 0.9630

w/o two-stage training 38.821 0.9784

Final model 39.346 0.9804

Sec. IV-C. We also conduct a user study in Sec. IV-F to com-
pare our results with the groundtruth. More video snapshots
and restored frames are shown in Sec. IV-E. The results in
GIF format are shown in the supplementary materials. Unless
explicitly stated otherwise, all the results and statistics shown
in the experiments are from the model trained with 5 input
frames.

A. Dataset

In this paper, we chose the 20BN-SOMETHING-
SOMETHING-V2 dataset [45] to train our model. It consists
of 220,847 video clips that capture people interacting with
everyday objects. Since this work does not consider high-level
semantic analysis, we only take 20,650 video clips from the
original dataset for network training to trade-off the training
time and the network capacity. For each video in the training
data, we do not use the original frame rate because we want the
network has the capacity to process larger motions. Thus, we
extract frames with a frame interval (n− 1). It means that we
only extract one frame in every n consecutive frames, where
n ∈ {5, 6, 7}. The reason why we introduce the randomness of
the frame interval is to improve the generality of our network
on different motion levels.

In the testing phase, we use Davis 2017 [46], which contains
150 video sequences, as the test set. We then double the test
set by random sampling two video clips in one original video
without overlapping.

B. Training Details

The complete network training process involves two stages.
In the first stage, we train the Motion Embedding Network
with the decoder together for 90 epochs. The embedded image

TABLE II
STATISTICS OF RESTORED FRAMES ON DIFFERENT EMBEDDING RANGES.

Embedding Range PSNR SSIM

5 39.346 0.9804
7 36.557 0.9656
9 34.594 0.9493

11 32.372 0.9262

TABLE III
STATISTICS OF RESTORED FRAMES ON DIFFERENT FRAME INTERVALS.

Interval PSNR SSIM

1 39.123 0.9797
3 38.885 0.9787
5 38.807 0.9774

generated by the Motion Embedding Network is quantized
to an integer, which may lead to information loss. In the
second stage, we finetune only the decoder for extra 30
epochs to overcome the quantization error. By the two-stage
training, decoder further improves the quality of temporal
reconstruction. Statistics in ablation studies (Table I) show that
the two-stage training strategy performs better than one-stage.
In addition, the whole training used Adam optimizer [47]. We
initialize the learning rate as 2e-4 and apply a polynomial
decay to it. The minimal learning rate is set to 2e-6, the default
power of the polynomial is 0.9. The batch size is up to 8.

C. Ablation Studies

We conduct ablation studies to prove the importance and
effectiveness of each component in our network. We first
compare our models in different configurations. Then we
discuss the information loss when increasing the embedding
range, which is the number of input frames. Next, we discuss
how large the motion will affect the performance in the
testing phase by keep increasing the frame interval. Finally, we
conduct a quantitative comparison of different restored frames.

a) Comparisons on Different Configurations: We com-
pare our complete model with the following six variants in
different configurations: 1) without perceptual loss; 2) without
embedding loss; 3) without unimodal loss; 4) without motion
attention module; 5) with motion attention module that shares
weights of each branch; 6) w/o two-stage training mentioned
in Sec. IV-B. Statistics are shown in Table I.
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(a) Groundtruth (b) DVF [48] (c) SepConv [49] (d) SuperSlo [50] (e) Ours

Fig. 10. Qualitative comparison with existing interpolation methods. Our method produces a smooth result with less artifacts.

(a) PSNR (b) SSIM

Fig. 11. PSNR and SSIM on different restored frames.

Since perceptual loss and embedding loss are designed for
improving the quality of the embedded image. Without any
of these two losses actually will not affect the information
encoding and decoding. So the PSNR and SSIM [51] values
of restored frames are comparable with our complete model.
However, without these two losses, the embedded image
(video snapshot) has more artifacts than the one generated by
the complete model. Fig. 9 visualizes the embedded images
generated by these two embedding related losses. The visual
result and statistics from our complete model are the best with
less artifacts.

The other components mainly focus on the encoding and
decoding performances. Without the motion attention module,
the PSNR and SSIM values decrease a lot which reveals the
importance of our proposed motion attention module. The mo-
tion attention module can identify and emphasize the motions
before passing the feature maps to the encoder. The unimodal
loss helps the motion attention module to balance the weights
of each individual frames and obtain more accurate motion
attention maps. Without this loss, the quality of the restored
frames also decreases. By sharing weights of convolutional
layers in the motion attention module, it greatly affect the
efficiency of motion encoding-decoding. It reveals that the
features of different frames should be learned and extracted
individually, and the shared convolutional layers cannot guar-
antee producing proper features for all the frames. Lastly,
statistics show that two-stage training strategy in Sec. IV-B
improves the frame restoration quality. Because fine-tuning
the decoder individually helps overcome the information loss
in image quantization of video snapshot.

b) Embedding Range Selection: Here, we discuss how
the embedding range, which is the number of input frames,

TABLE IV
INTERPOLATION COMPARISON ON THE UCF101 DATASET.

Methods PSNR SSIM
DVF [48] 29.37 0.861

SepConv-L1 [49] 30.18 0.875
SuperSloMo Adobe240fps [50] 29.80 0.870

Ours 30.23 0.881

affects our proposed method. Intuitively, larger embedding
range means that more information has to be encoded and
it will be more challenging. So that we launch this study by
starting from encoding 5 frames while keep increasing the
number of frames. Table II shows the statistics of restored
frames on different embedding ranges. It is no doubt that
our model performs the best when the embedding range is 5
due to the least information to be encoded. While increasing
the embedding range, the PSNR and SSIM values drastically
decrease. When the embedding range sets to 9, the PSNR
and SSIM values reach 34.594 and 0.9493, which are still
reasonable restoration qualities. However, if we increase the
embedding range to 11, some apparent artifacts occur. We
can conclude that to gain the best restoration quality, 5 input
frames are more appropriate. If we want to embed a longer
video into the video snapshot, 9 is also good enough. In this
paper, the results we have shown are all from the trained
model with 5 input frames for the best quality. Supplementary
materials provide more results in different embedding ranges.

c) Frame Intervals Study: To test the tolerance of our
method against the large motions in the testing phase, we
conduct a quantitative comparison by introducing the frame
interval n while sampling the testing videos. More specifically,
for each n + 1 frames, we only sample one frame. By doing
this, we can obtain larger motions by just simply increasing
the frame intervals. As can be seen in Table III, the PSNR and
SSIM values are more or less stable even when n = 5, which
usually contain large motions. It is because that we introduced
random frame intervals in the training phase. It improves the
generality of our model on different motion levels. However,
even the restored frames are perfect, the interpolation network
may not be able to provide visually appropriate results when
the motions are too large.

d) Quantitative Comparison of Difference Restored
Frames: We also conduct a comparison shown in Fig. 11
on different restored frames. The reason why the restored
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25.585/ 0.887

24.765/ 0.933

24.193/ 0.925

(a) video snapshot (b) Groundtruth
Fig. 12. Result gallery of video snapshots. Motion patterns are observable when we zoom in (a). Video snapshots are visually similar with the groundtruths
(b) no matter the motions are large or small. The corresponding input frames can be found in the first row of each case in Fig. 13.

frame in the middle shows the best performance is that we
use the intermediate frame of the input frames as the reference
image of the embedded image. Even though, the other restored
frames still show great statistical results.

D. Evaluation on the Interpolation Module

Here we examine our interpolation network by comparing
to state-of-the-art interpolation methods. Table IV reports the
single frame interpolation results on the UCF101 dataset [52].
Note that we adopt the motion masks provided by [48] to
calculate all metrics. Our method achieves a lightly better
results over the best competitor SepConv-L1 [49]. This is
because we involve warping into the process to generate mul-
tiple interpolated frames for a better optimization. Qualitative
comparison is shown in Fig. 10.

E. Results Visualization

Here, we visualize the outputs of our methods, video
snapshots, restored frames by the decoder, and interpolated

frames, in three different scenes. Fig. 12 shows video snap-
shots generated by the Motion Embedding Network comparing
with the groundtruth images. When we zoom in the video
snapshots, regular patterns are perceptible. That is the major
reason of getting low PSNR and SSIM values. However, when
we zoom out, the video snapshots are quite similar to the
groundtruths even the motion is large, like the dancing boy.

Fig. 13 shows the restored frames generated by the decoder
in the Motion Expansion Network. In each scene, images from
the first to the third rows in Fig. 13 are the groundtruth frames,
restored frames and the difference maps of MAE. MAE, PSNR
and SSIM values are shown on the bottom right corner of
each corresponding image. We can observe that our method
performs very well on spatio-temporal encoding-decoding both
qualitatively and quantitatively.

Fig. 14 demonstrates the interpolated frames generated
by the interpolation module in the Motion Expansion Net-
work. Since the interpolated frames have no corresponding
groundtruth frames, we only show the results. We can find that
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40.128/ 0.984 39.790/ 0.983 43.523/ 0.994 39.763/ 0.983 40.072/ 0.983

1.442 1.473 0.899 1.508 1.498

36.819/ 0.974 36.408/ 0.972 40.743/ 0.989 36.428/ 0.970 36.535/ 0.971

2.498 2.571 1.568 2.593 2.585

35.085/ 0.949 34.714/ 0.944 38.697/ 0.978 34.417/ 0.940 34.561/ 0.940

3.155 3.270 2.047 3.384 3.358

(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4 (e) Frame 5
Fig. 13. Result gallery of the restored frames from the decoder. (a) to (e) contain of the complete input frames of the video. For each scene, images in the
first row to the third row are the groundtruth frames, restored frames and the difference maps. PSNR, SSIM and MAE value are shown at the bottom right
corner of corresponding images.

when the motion is small, like the first scene, the interpolation
module predicts great and smooth interpolation results. When
the large motion and occlusion appears, like the dancing
boy, the interpolated results may contain artifacts at dynamic
regions. That is also the major challenge and limitation of
existing multiple frame interpolation techniques. With the
interpolation module, our output video is much smoother than
the one directly generated by the decoder. More results in GIF
format are shown in the supplementary materials.

F. User Study

We have conducted a user study on Amazon Mechani-
cal Turk (AMT) to compare our final video results with
the groundtruth videos. All the video results are generated
from their corresponding video snapshot. Since our Motion
Expansion Network contains a frame interpolation module.
To be fair, we passed all the groundtruth videos into our
proposed interpolation network with the same setting. Total
30 participants aging from 20 to 33 joined this user study
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Restored frame 1 Interpolation 1 Interpolation 2 Interpolation 3 Interpolation 4

Interpolation 5 Interpolation 6 Interpolation 7 Interpolation 8 Restored frame 2

Restored frame 1 Interpolation 1 Interpolation 2 Interpolation 3 Interpolation 4

Interpolation 5 Interpolation 6 Interpolation 7 Interpolation 8 Restored frame 2

Restored frame 1 Interpolation 1 Interpolation 2 Interpolation 3 Interpolation 4

Interpolation 5 Interpolation 6 Interpolation 7 Interpolation 8 Restored frame 2
Fig. 14. Result gallery of interpolation frames. For the restored frames 1 and 2 in Fig. 13, we interpolate 8 frames between them.

and they were asked for evaluating 30 pairs of randomly
selected videos. For each group of comparison, we show
participants two videos, the groundtruth and our result, with
random location. Participants were asked only one question:
“Which video looks more natural?”. Basically, the ideal user
study result should be 50/50, since users should not be able
to distinguish two videos when the results are as good as the
groundtruth. The user study result is shown in Fig. 15, which is
53/47 that very close to 50/50 even with the limited samples
and participants. It proves that the output video from video
snapshot is almost as good as the groundtruth video.

G. Timing Statistics

Here we show some timing statistics. In the training phase,
the image resolution of training data was resized to 256 times
256 as needed. We trained the resized dataset on a workstation
with a single Nvidia TITAN Xp GPU and Intel(R) Core(TM)
i7-6900K CPU @ 3.20GHz. The whole training process takes

Fig. 15. User study result. Most participants cannot differentiate our restored
video and groundtruth.

approximately 3.5 days to obtain the final model. Table V
demonstrates the timing statistics in the testing phase under
three different resolutions with and without GPU. All the
timing values are obtained by running the test set 10 times
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(a) Embedding (b) R1 (c) R2 (d) R3 (e) R4

(f) R5 (g) R6 (h) R7 (k) R8 (l) R9
Fig. 16. Video summary example. Given an embedding image (a) that encodes 9 frames with a large interval range (100 frames), our method can restored
the representative frames well (average PSNR and SSIM are 34.487 and 0.9393).

TABLE V
TIMING STATISTICS IN TESTING PHASE (IN SECONDS).

Resolution CPU only With GPU
Embedding Expansion Embedding Expansion

256× 256 0.641 51.752 0.018 0.103
512× 512 2.409 201.481 0.057 0.293
1024× 1024 10.978 848.515 0.219 1.143

and then calculating the average.

H. Discussion

1) Potential Applications: The proposed method can sup-
port many applications, here we discuss some of them.

Animated thumbnail. A straightforward application of our
method is to produce a short, around 1 second animation by
using the snap image as the thumbnail.

Animated printing. Video motion is stored in a viewable
video snapshot. Therefore, another application of our invertible
motion embedding is that our video snapshot can be printed
on a paper, and the motion can be restored on a mobile phone.

Except producing short animations, our method can handle
long video clips.

Video preview. Our proposed method can also provide an
invertible video preview or video fast-forward for an arbitrary-
length video by concatenating multiple consecutive video
snapshots. These video snapshots can also be restored back
to a longer video by expanding the video snapshot one by
one through the Motion Expansion Network. However, this
scheme has one limitation. When the scene changes within
one video snapshot, our method might fail on this particular
video snapshot and introduce artifacts due to the large motion
changes and pixels disappear. Results of video preview are
shown in the supplementary material.

Video summary. Handling continuous long video requires
to expand multiple video snapshots. We further demonstrate
discontinuous video frames (e.g., interval range sets to 100
frames) can be well embedded into one video snapshot,
allowing representing a video by a few representative frames.
Fig. 16 shows an example of video summary. Our method
can cope with a large interval range and restore discontinuous

Fig. 17. Compression ratio comparison in the application of video preview.

representative frames with a high fidelity (average PSNR and
SSIM are 34.487 and 0.9393).

2) Comparing to Video Compression: The proposed
method is designed for embedding data instead of compressing
it. Therefore, our video preview application can generate a
unified viewable form for a video. Comparing to traditional
video preview solution that using video compression combines
with a compressed image as the thumbnail, our method
does not outperform this solution in terms of compression
ratio (see the results on the UVG dataset [53] in Fig. 17).
However, the unique viewable and embedding nature makes
our method distinct from video compression, leading to more
possible applications other than video preview. For instance,
video compression cannot handle the applications of animated
printing, as well as the video summary because it relies on
compressing continuous spatio-temporal redundancy.

3) Limitations: There are three limitations of our proposed
method. First, the video snapshot can not be processed by
common image processing techniques, i.e., image resizing or
image compression. Because those lossy post-processing may
destroy the implicit pattern of the motion. Fig. 18 shows an
example of the restored frame by the decoder. Fig. 18(b)
& (c) are the restored frames from the video snapshot with
and without JPEG compression. More artifacts can be found



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

(a) GT (b) w/o JPEG (c) w JPEG
Fig. 18. Demonstration of the decoded image via JPEG compression. Here,
we only select one frame from the sequence for a simple illustration. The
visual difference between groundtruth image (a) and decoded without com-
pression image (b) is imperceptible. But manifest visual difference observed
with JPEG compression.

in Fig. 18 (c) than in Fig. 18(b). Secondly, when the scene
changes within one video snapshot, large motion changes and
pixels disappears. This scenario breaks the correlation between
the frames and harms the encoding and decoding process. One
more limitation is the artifacts introduced by the interpolation
module when the motions are large. This is also the common
limitation of existing multiple frame interpolation techniques.

V. CONCLUSION

In this paper, we present an invertible motion embedding
and motion expansion technique. It can embed a video into
one video snapshot. Later, the video snapshot can be restored
back to a video again. A well designed motion attention
module associated with an encoder makes valuable contribu-
tion to improve the spatio-temporal encoding. The proposed
interpolation module makes the restored video longer and
smoother. In addition, our work provides an new perspective
on information encoding and decoding on temporal domain.
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