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Abstract Accurate and timely traffic flow forecasting is essential for many intelligent
transportation systems. However, it is quite challenging to develop an efficient and robust
forecasting model due to the inherent randomness and large variations of traffic flow. Over
the past two decades, a variety of traffic flow forecasting models have been proposed. While
each model has its merits and can achieve satisfactory forecasting results under certain traffic
conditions, it is difficult for a single model to deal with various conditions well. In this paper,
we proposed a novel deep learning-based multimodel integration framework in order to over-
come the limitations of previous methods in dealing with large variations and uncertainties
of traffic flow and hence improve the forecasting accuracy. Our framework can dynamically
choose an optimal model or an optimal subset of models from a set of candidate models
to forecast the future traffic flow conditions according to current input data. We employ
stacked autoencoder (SAE), a simple yet efficient deep learning architecture, to extract the
implicit relationships hidden in the traffic flow data and employed labeled data to fine tune
the parameters of the architecture. Compared with the hand-crafted features and explicable
dependence relations leveraged in previous models, the features learning from SAE are more
representative and hence have more powerful forecasting capability. In addition, we propose
a model-driven scheme to automatically label the training data and develop three strate-
gies to integrate multiple models. Extensive experiments performed on three typical traffic
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flow datasets demonstrate the proposed framework outperforms state-of-the-art models and
achieves much more accurate forecasting results under large and sudden variations.

Keywords Traffic flow forecasting · Stacked autoencoder · Multimodel integration ·
Variation and uncertainty · Deep learning

1 Introduction

Accurate and timely traffic flow forecasting is a crucial prerequisite for many intelligent
transportation applications, such as traffic management and control, transportation networks
design, and individual transport planning. Accurate traffic flow forecasting not only enables
appropriate allocation of transportation resources, but also allows individuals to make better
travel planning to save time and avoid traffic congestion. To the end, a lot of researchers have
been dedicated to developing various models for efficient traffic flow forecasting.

However, although these existing model has its merits and is applicable to a specific traffic
condition, it is difficult for a single model to deal with all conditions due to the significant
space inhomogeneity and time-varying characteristics of traffic flow, not to mention traffic
accidents occasionally happen on the roads. For example, the historical average models were
developed based the periodic characteristic of traffic flow, and thus it was not able to make a
proper response to unexpected incidents. On the other hand, the Kalman filter based methods
usually suffer from two major limitations: (1) the traffic variations are assumed to be linear;
and (2) the traffic states are assumed to be Gaussian distributed, but the traffic states are
sophisticated in many real-life situations and the estimating states are not always Gaussian.
Some non-linear models were therefore proposed to deal with the non-linearity of traffic
flow. The support vector machine regression models (SVR) map the non-linear relations to
a high-dimensional space by minimizing the function gap and the empiric risk, while the
models based on artificial neural networks leverage activation function to non-linearly map
the inputs by minimizing the error between the measurements and the outputs. However,
these models either heavily depend on the amount and quality of training data or are so
computationally intensive that cannot be applied in practice.

In order to overcome these shortcomings, researchers propose various approaches to
enhance these models by preprocessing the traffic flow data, combining the seasonality
nature and improving training mechanisms for some learning basedmethods. However, these
improvements based on a single model still could not achieve satisfactory results due to the
large variations of traffic flow data in both spatial and temporal domains. For example, in the
same week, the traffic flow data in weekday and weekend have quite different characteristics
while in the same day the traffic flow data in the morning and in the evening have different
features. In addition, there are a lot of factors that will influence the changes of traffic flow,
such as weather condition or accidents. In this regard, it is difficult to accurately model the
traffic flow data using only one single model.

In this paper, we propose to integrate a set of representativemodels into a unified ensemble
framework and exploit stacked autoencoder networks (SAE) to select an optimal model or an
optimal subset of models to perform traffic flow forecasting in a real-time manner according
to the current situation. In order to train the SAE, we acquire the training dataset from
historical real data and develop a model-driven mechanism to automatically label them.
We then train the SAE based on the training dataset and fine-tune the trained model by
taking use the probability obtained in the labeling stage. Once the SAE is established, we
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can input the current traffic flow and the SAE will choose an optimal model or an optimal
subset of models based on the probability distribution. To efficiently and flexibly leverage
the probability distribution for forecasting, we implement three strategies to integrate the
candidate models according to their probabilities, namely conditional expectation, maximum
probability and selective integration. In our implementation, we choose six representative
models as the candidates while our framework is extensible to include more models. To
validate the effectiveness of the proposed framework, we perform extensive experiments
on three representative traffic flow datasets: Netherlands Amsterdam motorways dataset,
the dataset of Caltrans Performance Measurement System (PeMS) and the dataset from the
Traffic Data Acquisition and Distribution (TDAD) system. Experimental results demonstrate
the proposed method outperforms state-of-the-art models and achieves much more accurate
forecasting results under large variations and uncertainties by dynamically selecting the
optimal model(s).

Our contributions can be summarized as follows:

– to the best of our knowledge, our work is the first attempt to employ deep learning archi-
tecture to integrate multiple models for accurate and real-time traffic flow forecasting;
thanks to the powerful learning capability of SAE, our method can overcome the limi-
tations of previous methods in dealing with large variations and uncertainties of traffic
flow and achieve much better performance compare with existing models;

– we employ SAE, a simple yet efficient deep learning architecture, to extract the implicit
relationships hidden in the traffic flow data and employed labeled data to fine tune the
parameters of the architecture; compared with the hand-crafted features and explicable
dependence relations leveraged in previous models, the features learning from SAE are
more representative and hence more powerful to make forecasting; in addition, we pro-
pose amodel-driven scheme to automatically label the training data to avoid the laborious
labeling work, which is an essential prerequisite for many deep learning techniques.

The remainder of this paper is organized as follows. We briefly introduce related works
in Sect. 2. Section3 presents the proposed learning-based multimodel integration framework
in details. Experiments and results are reported in Sect. 4. Finally, we draw conclusions in
Sect. 5.

2 Literature Review

A variety of traffic flow forecasting models have been proposed in the literature. In this
section, we briefly review some models closely related to the proposed framework. Readers
can refer to [35] for a more comprehensive review.

Traffic flow forecasting models can be roughly classified into two categories: parametric
models and nonparametric models [35]. Parametric models mainly include various time
series models, such as linear and non-linear regression models, historical average algo-
rithms [42,44], smoothing techniques [10,33,39,42,57], Kalman filtering methods [5,16,
36,40,46,51,58,59] and autoregressive models [2,3,11,17,25,27,34,38,56,57]. We intro-
duce some typical or recently proposed models here. Xie et al. [58] first investigated the
application of Kalman filter with discrete wavelet analysis in short-term traffic volume fore-
casting, which improves the accuracy under large variations of traffic flow by denoising the
data with discrete wavelet decomposition and then using the Kalman filter to estimate the
weight of the past traffic flow. Ghosh et al. [15] introduced a parsimonious and computation-
ally simple multivariate short-term traffic condition forecasting algorithm using a different
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class of time-series models called structural time-series model (STM). Tchrakian et al. [47]
described an algorithm for the short-term prediction of traffic with real-time updating based
on spectral analysis. Pan et al. [37] extended the SCTM framework to consider the spatial
and temporal correlation of traffic flow and to support short-term traffic state prediction.
The SCTM is short for stochastic cell transmission model, which describe the macroscopic
dynamics of the traffic flow under demand and supply uncertainties [45]. Wang et al. [54]
developed an adaptive prediction algorithm for the inflows into the network in regular traffic
situations based on an adaptive prediction algorithm of Bohlin [8]. However, although these
models are easy to implement and computationally effective, it is difficult for them to resolve
the intrinsic model uncertainties.

The nonparametric techniquesmainly include nonparametric regressionmodels [13], neu-
ral networks [41,53] and support vector regression algorithms [12,19,20,28]. Some typical
and newly released methods are briefly introduced here. Boto-Giralda et al. [9] applied
wavelet-based denoising self-organizing neural networks to traffic flow forecasting, which
learns the self-organizing neural networks with wavelet denoised data. Chan et al. [10] pro-
pose a novel neural network (NN) method that employs the hybrid exponential smoothing
method and the Levenberg–Marquardt (LM) algorithm for framework NNs. Jeong et al. [23]
present a novel prediction model, called online learning weighted support-vector regression
(OLWSVR), for short-term traffic flow predictions. Lippi et al. [28] present two new support
vector regression models based on the typical traffic flow seasonality. Hu et al. [21] present
a hybrid PSO-SVR model, which uses particle swarm optimization (PSO) to search optimal
SVR parameters. However, most of these models highly depend on the amount and quality
of training data, and hence are not practical in many situations.

In 2006, Hinton and Salakhutdinov [18] described an effective way of initializing the
weights that allows deep autoencoder networks to learn low-dimensional codes that work
much better than principal components analysis (PCA) as a tool to reduce the dimensionality
of data. The key to success of deep learning is mainly due to the ability of high feature
extraction using a general-purpose learning procedure [26]. Although there is rare explicit
mathematical proof of the theoretical aspects of this success, the common view is that layer-
wise training with good criterion may help to learn discriminative features, and a lot of
effort has been made [6,48,49]. Recently, Huang et al. [22] and Lv et al. [30] have applied
stacked autoencoder and deep belief networks to traffic flow forecasting, respectively. They
are the pioneers that introduced deep learning approaches into this field. The normalization
operation is required to assign the maximum traffic flow to the forecasting point, i.e. the
capacity of the transportation facility can accommodate at that point. However, the capacity
varies under different conditions, such as environmental condition, season, degradation of
the road surface, and so on. This issue was discussed in previous studies [1,7,32]. In this
regard, the undetermined capacity will affect the forecasting accuracy of their deep networks.
We suggest readers refer to [28] for more details on approaches for short-term traffic flow
forecasting under the common view of probabilistic graphical models.

3 The Proposed Multimodel Integrated Framework

As analyzed, most existing forecasting models cannot well deal with the large variation
and inherent uncertainties of traffic flow. To overcome this limitation, we propose a novel
learning-based multimodel integration framework, which can automatically and adaptively
choose (or construct) a suitable forecastingmodel from a set of candidatemodels for arbitrary

123



A Learning-Based Multimodel Integrated Framework for…

Fig. 1 The flowchart of the proposed framework. The training data are input to all the pre-trained candidate
models to perform labeling based on a model-driven mechanism. Then the labeled data are used to train the
stacked autoencoder deep network. At the forecasting stage, the testing data are fed into the trained network
to determine which model(s) is (are) more suitable to conduct the forecasting under current condition. The
results can be calculated by three strategies

input traffic flow. Figure1 shows the flowchart of the proposed framework, which consists
of two phases: the training phase and the forecasting phase.

In the training phase, two key issues are involved: the training data preparation (the left-
top in Fig. 1) and the deep learning network training (the left-below in Fig. 1). To prepare the
labeled training data for the deep learning network training, an automatic labeling scheme is
developed to determine the most suitable forecasting model for each group of training traffic
flow by selecting the model with the most accurate forecasting result. When the labeled
data are ready, the stacked autoencoder (SAE) algorithm is employed to construct the deep
learning network. In the forecasting phase, given the testing traffic flow data as input, the
suitability probability for each candidate model can be obtained based on the trained deep
network. Then, three strategies, including conditional expectation, maximum probability,
and selective integration, are designed to calculate the final forecasting results.

Without loss of generality, we describe ourmethod based on an assumption that we always
focus on a certain measurement location in the input road network. Other locations in the
road network can be dealt with in the same way.

3.1 Training Data Preparation

To prepare the training data for a certain measurement location, two sets of training data
are required. One set is used to train the candidate models in order to determine the optimal
parameters for each model. We denote it as XM = {xm}m=1,...,M , where M is the number
of groups of traffic flow data in XM. The other set is used to train the deep network for
calculating the suitability probabilities of the candidate models for a specific group of traffic
flow data.We denote it as XF = {xn}n=1,...,N , where N is the number of groups of traffic flow
data in XF . There is no overlap between XM and XF . Each element (either xm or xn) in the
dataset corresponds to a group of traffic flow collected at a certain time interval. In practice,
the traffic flow data in the coming time intervals are usually associated with the data in the
previous continuous time intervals and surrounding locations. In this case, we further define
each x as {vi, j }i=1,...,O, j=t,...,t−R+1, where vi, j is the traffic flow measured at location i and
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time interval j ; R is the number of associated time intervals; O is the number of measurement
locations in a road network. Note that usually all of the measurement locations in the road
network are involved in the forecasting, since the road network is often so complicated that
it is difficult to accurately determine the associated locations for each case.

3.1.1 Candidate Model Training

Our framework is designed to intelligently integrate multiple forecasting models to deal with
large variations and random uncertainties of traffic flow.We choose six representative models
as the candidate models, which can cover most of the traffic conditions in practice. The six
candidate models are the most popular and widely used models for traffic flow forecasting
nowadays. Among them, we select four time series models (the historical average (HA) [42],
the randomwalk (RW) [28], the autoregression (AR) [38], and theKalman filtering (KF) [58])
and two statistics-based learning models (ANNs [61] and SVR [21]). Note that the proposed
framework is extensible to include more models.

Before using the candidate models for forecasting, a set of parameters for each candidate
model should be determined based on the training data. For example, we need to learn the
weights for each layer of ANNs by back-propagation algorithms [61]; for SVR, we need to
train the support vector machine by optimizing function margin and expected risk [21]; for
Kalman Filtering models, we need to obtain the variances of the measurement noise and the
process noise by EM algorithm [58]; for historical average models, we need to compute the
historical average traffic flow; for AR, we need to determine the order of the autoregression
model.

For a certain measurement location, the training data XM is prepared for training the
candidate models. Then the trained candidate models with optimal parameters are obtained,
which can be used for the following forecasting. We indicate the trained kth candidate model
as G(k).

3.1.2 Training Data Labeling

The goal of our framework is to choose the most suitable candidate model for a given group
of traffic flow. This requires that the framework training data should be labeled with the
most suitable candidate model. Actually, each traffic forecasting model has its own merits
and disadvantages [54]. For examples, the historical average approach has a key drawback
in responding to unexpected incidents; the Kalman filtering approach is prone to produce
overshoots; and the performance ofANNs heavily relies on the amount and quality of training
data. However, it is still difficult to determine the most suitable candidate model for a set of
training data based on these characteristics, considering the complexity of traffic conditions.
In this regard, we propose a simple yet effective scheme to label the training data.

It is reasonable to assume that, for a group of traffic flow, the candidate model which
produces theminimumprediction error ismost likely to be itsmost suitablemodel. According
to this assumption, for a certain measurement location o, given the nth group of traffic flow
xn in the dataset XF , the prediction error by the kth candidate model can be computed using
the following equation:

εk =
∣
∣
∣vt+1,o − G(k)(xn)

∣
∣
∣ , (1)

where vt+1,o is the traffic flow data collected at location o at time t + 1, G(k)(xn) is the
predicted value of vt+1,o by the candidate model k, and εk is the prediction error of model k.
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Thus, the model which produces the minimum prediction error can be obtained by

k∗ = argmink=1,...,K (εk), (2)

where K is the number of candidate models, and k∗ is the index of themost suitable candidate
model for the nth group of traffic flow in XF . That means the nth group of traffic flow xn
can be labeled with yn = k∗. Thus, for a certain measurement location in a road network, its
labeled training data can be obtained and indicated as YF = {xn, yn}n=1,...,N .

3.2 Deep Learning Network Training

With labeled training data, we target for training a classifier that can choose the most suitable
candidate model for each group of traffic flow. Classification algorithms based on machine
learning have made great progress in images processing as well as other pattern recognition
tasks [4]. Many of them need to design hand-crafted features, which are capable of differenti-
ating the target categories. However, in our application, it is difficult to use common features,
such as occupancy or average speed, or design other hand-crafted features to differentiate
the forecasting models effectively due to the large variations of traffic flow states.

Recently, deep learning [26] has drawn a lot of academic and industrial interests [14,31,
55], which can automatically discover the implicit relationships inside the data in a hierar-
chical manner. This feature motivates us to exploit it to reveal the complicated relationships
of traffic flow data collected at different measurement points and different time slots in a road
network in order to achievemore accurate forecasting based on these implicit relationships. In
other words, it has great potential to learn representative high-level spatiotemporal features,
that cannot be expressed with traditional hand-crafted descriptors, in order to find suitable
models for more accurate forecasting. Moreover, deep learning can achieve the real-time
forecasting, since the time-consuming training process can be conducted off-line.

Currently, lots of models [26] have been proposed for deep learning. We employ the
stacked autoencoder (SAE), a simple yet efficient deep learning network architecture, in our
application. As shown in the left-below part of Fig. 1, the SAE is a neural network consisting
of multiple layers of autoencoders, which learn the features in an unsupervised way with
the unlabeled data. A classifier is then integrated to further fine-tuning the whole network to
achieve accurate classification with labeled data.

3.2.1 Autoencoder

One of the main features of autoencoders is that they can be used for big data analysis, as both
the unsupervised training and the fine-tuning scale linearly in time and space with respect to
the number of training cases [18]. To the end, it is quite suitable for traffic flow forecasting,
which is usually involved a large amount of data. As shown in Fig. 2, each autoencoder is a
neural network with only one input layer, one hidden (feature) layer and one output layer,
and the the output is encouraged to reproduce the input [50]. Suppose that the input is an
unlabeled dataset X , the hidden layer H and the output layer Z can be formulated as:

H = f (W (1)X + b(1)),

Z = f (W (2)H + b(2)). (3)

where f (·) is a non-linear mapping function. Recent studies found that f (x) = 1
1+exp(−x) ,

f (x) = tanh(x) or f (x) = max(0, x) achieve better results. In this paper, we set f (x) =
1

1+exp(−x) . Note that in our case, X is the traffic flow data XF and H is the learned feature
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Fig. 2 Illustration of an
autoencoder. The input data
X = XF is a matrix in which
each column corresponds to a
group of traffic flow.
Correspondingly, H is a matrix in
which each column corresponds
to the feature vector for a group
of traffic flow as input, and Z is a
matrix in which each column
corresponds to a group of
reconstructed traffic flow. Here,
we only show one column
corresponding to one group of
traffic flow for simplification

of the traffic flow data. The {W (1), b(1)} and {W (2), b(2)} are the coefficients for determining
the networks from X to H and from H to Z respectively. They can be solved by minimizing
the following energy function [50]:

E = 1

2
(X − Z(X))2

+ λ

2

(∥
∥
∥W (1)

∥
∥
∥

2

F
+

∥
∥
∥W (2)

∥
∥
∥

2

F

)

+ β

s
∑

j=1

KL(ρ||ρ̂ j ). (4)

where ‖A‖F is the Frobenius norm of matrix A; K L(p||q) is the Kullback–Leibler diver-
gence.

ρ̂ j is the average activation of the j th row of matrix H , defined as ρ̂ j = 1
N

∑N
i=1 Hi, j

where N is the number of groups of traffic flow in the input XF ; ρ is the target sparsity; s is
the dimension of H ; λ and β are control parameters.

This energy function is designed to achieve three objectives which exactly correspond to
three components on the right side of Eq.4. The first one is tominimize the difference between
the input data X and the reconstructed data Z . In order to prevent over-fitting, a regularization
term is introduced for decreasing the magnitude of the weights. Lastly, sparsity constraints
of Kullback-Leibler divergence is employed to extract more representative features, which
can better differentiate the categories of the input data, since there are lots of correlations
among the traffic flow data.
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Fig. 3 Illustration of SAE

3.2.2 Stacked Autoencoder

The SAE is a neural network consisting of multiple layers of autoencoders for feature extrac-
tion with the unlabeled data, and a classifier for fine-tuning the whole network with labeled
data. Hence, the training of the SAE is composed of two steps: (1) unsupervised learning for
feature extraction using layer-wise autoencoders; and (2) supervised fine-tuning for accurate
classification with a softmax classifier.

Feature Extraction In the SAE, the hidden layer of the previous autoencoder would be the
input of the following autoencoder. For example, as shown in Fig. 3, the hidden layer H (1),
which is the feature extracted by the 1st autoencoder, is the input of the 2nd autoencoder. We
rewrite Eq.3 as the following equation [52]:

H (l) = f (W (l,1)H (l−1) + b(l,1))

Z (l) = f (W (l,2)H (l) + b(l,2)) (5)

where H (l−1), H (l) and Z (l) is the input, hidden and output layer of the lth autoencoder,
respectively. Then we process the layer-wise training greedily based on Eq.4 with H (0) =
XF . In this case, the coefficient matrices for each autoencoder {W (l,1), b(l,1),W (l,2), b(l,2)}
can be trained. In our application, based on the trained network of the multi-layer autoen-
coders, we can obtain the different layers of features H (l) for the input traffic flow XF .
Although these features can implicitly reflect the relationships of the input traffic flow data,
we should fine tune the network parameters with labeled data to enhance the representation
capability of these features so that accurate forecasting can be achieved.

Network Fine-TuningWith the feature automatically extracted from the traffic flow, we need
a classifier to fine-tune the whole network to evaluate the suitability of a candidate model
for a specific input traffic flow. To the end, we attach a classifier at the end of multi-layer
autoencoders for fine-tuning the whole network through backpropagation.

In our implementation,we apply a generalization version of a logistics regression classifier,
softmax classifier [24], for multi-classification. Given the feature H (L) extracted from the last
autoencoder in the network, where L is the number of layers of autoencoders, the condition
probability of H (L) can be denoted as [52]:
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⎡

⎢
⎢
⎢
⎣

P(I = 1|H (L); θ)

P(I = 2|H (L); θ)
...

P(I = K |H (L); θ)

⎤

⎥
⎥
⎥
⎦

= 1
∑K

k=1 exp(θ
(k)�H (L))

⎡

⎢
⎢
⎢
⎣

exp(θ(1)�H (L))

exp(θ(2)�H (L))
...

exp(θ(K )�H (L))

⎤

⎥
⎥
⎥
⎦

(6)

where I denotes the index of a candidate model; θ is the coefficient matrix for the classifier
indicating as θ = [

θ(1) θ (2) · · · θ(K )
]

; θ(k) is the coefficient vector indicating the contribu-
tion of each element in H (L) to the kth candidate model. Thus, P(I = k|H (L); θ) denotes the
probability of H (L) if it is classified to the kth candidate model based on coefficient matrix
θ . The term 1

∑K
k=1 exp(θ

(k)�H (L))
is used for normalization.

The cost function of softmax can be derivated as:

J (θ) = −
[

N
∑

n=1

K
∑

k=1

δy(n),k log
exp(θ(k)�H (l)

n )
∑K

k=1 exp(θ
(k)�H (l)

n )

]

δy(n),k =
{

0, i f y(n) �= k

1, i f y(n) = k

(7)

where H (l)
n is the feature extracted by the lth autoencoder when the nth group of traffic data

x (n)
F is given as input. In this case, H (l)

n is actually determined by {W (l,1), b(l,1)} for each
layer of autoencoder. We employ the Kronecker delta δ to only focus on the candidate model
which is exactly the same as the labeled one in YF . Through maximizing the probability of
all groups of traffic flow in XF when they are classified into the labeled candidate models,
the best classification can be obtained. We utilized the limited-memory Broyden–Fletcher–
Goldfarb–Shanno algorithm [29], a typical gradient descent algorithm to solve this cost
function.

3.3 Forecasting by Probability-Driven Model Integration

For a certain measurement location, once its deep network is trained with the labeled training
data YF , given a group of testing data xT , the probability for each candidate model can be
obtained, as shown in the right part of Fig. 1. The probability P(I = k|xT ) indicates the suit-
ability of the kth candidate model for the input xT . In order to flexibly and comprehensively
leverage the probabilities for better forecasting, we introduce three strategies to integrate the
candidate models according to their probabilities.

3.3.1 Conditional Expectation

The most straightforward way is to calculate the conditional expectation of the forecasting
result according to the probabilities. The conditional expectation can be calculated as:

v̂o,tT +1 =

⎡

⎢
⎢
⎢
⎣

G(1)(xT )

G(2)(xT )
...

G(K )(xT )

⎤

⎥
⎥
⎥
⎦

� ⎡

⎢
⎢
⎢
⎣

P(I = 1|xT )

P(I = 2|xT )
...

P(I = K |xT ))

⎤

⎥
⎥
⎥
⎦

(8)

where v̂o,tT +1 is the forecasted traffic flow at location o in next time point; G(k)(xT ) is
the forecasting result of candidate model k; and P(I = k|xT ) is the suitability probability
of candidate model k for data XT . This strategy works well in most of the cases in our
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experiments, but it may fail when one or more candidate models produce forecasting results
with large deviations, which lead to relatively big errors in the calculation of conditional
expectation.

3.3.2 Maximum Probability

To avoid the effects of unsuitable candidate models on the forecasting result, the second
strategy is proposed to only consider the candidate model with maximum probability, which
is defined as:

k∗ = argmax
k

P(I = k|xT ). (9)

where k∗ is the index the model with maximum probability. Thus, the forecasting result can
be calculated as:

v̂o,tT +1 = G(k∗)(xT ). (10)

This strategy is more efficient and can achieve good forecasting results when the probabil-
ity of the selected model is dominant over all other models. However, when one or more
other models’ probabilities are close to that of the selected model, the strategy may produce
inaccurate results.

3.3.3 Selective Integration

In the third strategy, we propose to consider models with relatively high probabilities instead
of only employing the one with maximum probability. To determine whether a candidate
model should be considered or not, we define a threshold value ψ∗, and calculate the value
of ψ = P(k|xT )

P(k∗|xT )
for each model. When ψ ≥ ψ∗, the kth model is chosen for forecasting.

Otherwise, it is ignored. After the selected models are determined, we figure out the forecast-
ing result by re-normalizing their probabilities and calculating the conditional expectation of
these selected models according to Eq.8. In essence, it is a trade-off scheme of conditional
expectation strategy and maximum probability strategy.

Note that our framework can achieve real-time forecasting for arbitrary input traffic flow,
as the forecasting phase performed online only involves simple matrices addition and multi-
plication. The computation-intensive training phase is performed off-line.

4 Cases Study

We validate the proposed learning-based multimodel integrated framework on three real
traffic flow datasets. We compare our method with commonly used forecasting models, as
well as the three strategies equipped in our framework, in terms of two frequently used criteria:
the root mean square error (RMSE) and the mean absolute percentage error (MAPE).

4.1 Data Description

The first dataset was collected from four motorways byWang et al. [54], namely A1, A2, A4,
and A8, which end on the ring road of Amsterdam (the A10 motorway), as shown in Fig. 4.
We simply depict the four motorways as follows.

– The A1 motorway connects the city of Amsterdam with the German border, which is
also a European route. The European route E30 follows the A1 motorway from the
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Fig. 4 The four motorways namely A1, A2, A4, and A8, which end on the ring road of Amsterdam. The four
measurement sites are without highly correlations spatially

interchange Hoevelaken in the Netherlands. There is the first high-occupancy vehicle
(HOV) 3+ barrier-separated lane in Europe on A1 motorway. The traffic flow in this
HOV lane dramatically changes over time, making the forecasting quite challenging.

– The A2 motorway is one of the busiest highways in the Netherlands, which connects the
city of Amsterdam and the Belgian border. In our experiment, we use the data collected in
2010 before the motorway is widened to examine if the proposed framework can perform
well with congestions.

– The A4 motorway is part of the Rijksweg 4, which starts from Amsterdam to the Belgian
border. The A4 motorway has priority from the eastern direction until the interchange
De Nieuwe Meer, then travels to the southeast.

– The A8 motorway starts from the A10 motorway at interchange Coenplein, ends at
Zaandijk less than 10km.

The four measurement sites locate on the motorways a short distance before the merge
points to the ring road. The data were provided from May 20, 2010, to June 24, 2010, col-
lected by MONICA sensor. The raw data were aggregated by vehicles per hour in 1min. We
aggregate the raw data into 5- and 10-min. The 5/10-min aggregation of this dataset is the
average vehicles per hour in these 5/10min, which is in a consensus with the previous stud-
ies [54,60], who also used this dataset. We aim at employing the first dataset to demonstrate
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the performance of the proposed framework for a dataset with similar patterns but without
high correlations.

The second group of traffic flow data was acquired from the performance measurement
system (PeMS) deployed by California Department of Transportation. PeMS provides access
to real-time and historical data (since 1999) in various formats. These data were collected
from over 35,000 detectors with an interval of 30 s.

In our experiments, we employed the traffic flow data of the first 9 weeks in 2015, i.e. Jan
5, 2015, to Mar 8, 2015, from North Center of California. The data are aggregated in 5-min
granularity and acquired from 1254 individual measurement stations. In this dataset, the raw
data are aggregated by vehicles in 5min, and the same as the third dataset. Huang et al. [22],
Lv et al. [30] and Xie et al. [58] also make the same aggregation on these datasets. Note that
as 61 stations were suffering from hardware failure during this period, we utilized data from
1193 stations indeed.

The third dataset was obtained from the traffic data acquisition and distribution (http://
www.its.washington.edu/tdad/) database. These data were collected from four different
detectors (ES-088D, ES-855D, ES-708D, and ES-645D) located on Interstate 5 (I-5), Inter-
state 90 (I-90), and Interstate 405 (I-405) in Seattle. The dataset has 35 days of traffic data
(May 30, 2005–July 3, 2005). The raw 24-hour traffic flow data were collected every 20s
and then aggregated in 5- or 10-min granularity.

4.2 Candidate Model Configuration

We took sixwidely-used forecastingmodels, namely historical averagemodel (HA) [28], ran-
dom walk model (RW) [28], auto regression (AR) [38], ε-support vector machine regression
model (ε-SVR) [21], Kalman filtering model [38], and artificial neural network (ANN) [61],
as the candidate models in our framework. Note that the proposed framework is extensible to
integrate more forecasting models, but we think the above-mentioned six models can cover
most traffic situations. For each of the three experimental datasets, we employed parts of the
data to train the candidate models. The concept of the candidate models is simply introduced
as follows.

Historical Average Model This model predicts for a given time of the day the average of the
same time on the same day in previous weeks.

RandomWalk Model This model simply predicts the traffic flow next moment as equal to the
current condition.

Autoregression Model The autoregression model is a representation of a random process and
it has been widely used in traffic flow forecasting due to the randomness of the traffic flow. In
the autoregression model with order p, the current traffic flow is represented by a weighted
combination going back p periods, following a random disturbance in the current period.
In this regard, the order p is critical for the autoregression models. If the order is low, the
valuable information contained in the lagged will be omitted. On the other hand, if the order
is too high, more coefficients need to be estimated, and additional errors will consequently
be introduced. The order in our experiment is set to 8 by cross-validate of our training data.

ε-Support Vector Machine Regression Model For the ε-Support Vector Machine Regression
Model, several parameters need to be set beforehand. The regression horizon is set the same
as the autoregression model. The two weeks traffic flow measurements are aggregated 5-min
and 10-min granularity to make up the training matrices. We use radial basis function (RBF)
as the kernel type in this study. The cost parameter C is set to the maximum difference

123

http://www.its.washington.edu/tdad/
http://www.its.washington.edu/tdad/


T. Zhou et al.

Table 1 Configurations of ANN
model

Parameters Values

Hidden layers 1

Goal 0.001

Spread 2000

MN 40

DF Default

between the traffic flows. The width parameter γ for the RBF kernel is set to 3× 10−6. The
ε-insensitive loss for ε-SVR is fixed to 1 in this study.

Kalman Filtering Model Since the raw traffic flow data have too many fluctuations for the
direct Kalman filter to handle, we introduce a wavelet denoising procedure proposed by Xie
et al. [58]. We use Daubechies 4 as the mother wavelet. Different from Xie et al. [58], we
simply set the variance of the process error Q as a small value, namely 0.1× I, where I is the
identity matrix. The variance of the measurement noise is considered as 0. The initial state
of the dynamic system is set to

[ 1
n , . . . , 1

n

]

, where n is set to 8, the same as Xie et al. [58].
The initial state estimation error covariance matrix is 10−2 × I.

Artificial Neural Network Model We employ the artificial neural networks introduced in
Zhu et al. [61]. The network parameters are described in Table1, where most of them are
consistent with [61].

4.3 Experimental Setup

In the first dataset of Amsterdam motorways, the collected data are divided into three parts,
the first twoweeks are used for candidate training, the third and fourth are used for framework
training, and the rest one is used for evaluation. We manually check the raw data to remove
the incorrect data, i.e. the value is − 1, caused by the hardware failure.

The architecture of SAE used in the first dataset is set to [120, 60, 30]. The scaling param-
eter for l2 weight regularization penalty in Eq.4 is set to 0.1. The sparsity is set to 0.03.
We randomly drop out some measurements of the training inputs to improve the network
performance (see [43] for more details). The relative thresholdψ in the strategy 3 is set to 0.7.

In the dataset of PeMS, the data of the first four weeks are used to train the candidate
models, and the data of the following four weeks are used to train the proposed framework,
the data of the last week are used to evaluate the performance of the proposed framework. The
architecture of stacked autoencoder network in this experiments is set to [1200, 700, 400].
The scaling parameter for l2 weight regularization penalty in Eq.4 is set to 0.05. The sparsity
is set to 0.05. We also take the drop out strategy [43] to avoid overfitting.

In the dataset of TDAD, the five weeks data are divided into three parts, the first twoweeks
are used for candidate models training, the third and fourth are used for framework training,
and the rest one is used for evaluation. The deep architecture of stacked autoencoder network
in this experiments is set to [100, 40, 20]. Other parameter configurations are the same with
the first dataset.
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Table 2 The forecasting results of the proposed framework and the candidatemodels on dataset ofAmsterdam
motorways

A1 A2 A4 A8

5min 10min 5min 10min 5min 10min 5min 10min

SVR RMSE 303.02 329.09 221.38 259.74 230.04 253.66 162.55 190.30

MAPE 14.26 14.34 12.31 12.22 13.45 12.23 14.18 12.48

HA RMSE 399.41 404.84 332.35 348.96 341.97 357.85 213.27 218.72

MAPE 19.35 16.87 17.69 15.53 18.90 16.72 19.31 16.24

RW RMSE 325.44 312.92 217.57 223.82 227.66 230.01 163.38 174.14

MAPE 14.80 12.65 12.66 11.43 13.46 12.06 15.43 12.37

AR RMSE 292.19 301.44 200.98 214.22 209.80 226.12 151.47 166.71

MAPE 14.44 13.57 12.20 11.59 13.24 12.70 14.32 12.71

ANN RMSE 291.25 299.64 200.32 212.95 209.42 225.86 151.30 166.50

MAPE 13.77 12.61 11.66 10.89 12.98 12.49 14.16 12.53

KF RMSE 333.27 332.03 217.43 239.87 230.98 250.51 171.36 187.48

MAPE 14.60 12.46 12.33 10.72 14.50 12.62 15.32 12.63

Strategy1 RMSE 220.13 220.10 162.06 166.13 166.24 171.15 107.06 120.28

MAPE 9.55 8.09 8.72 7.23 8.78 7.46 8.70 7.53

Strategy2 RMSE 230.87 234.34 178.50 189.24 176.15 176.68 109.7 123.68

MAPE 9.32 7.86 8.54 6.91 8.44 7.37 8.24 7.34

Strategy3 RMSE 224.54 224.26 171.27 178.77 172.39 171.43 108.63 120.37

MAPE 9.18 7.70 8.37 6.85 8.34 7.21 8.28 7.21

Bold represents the lowest RMSE or MAPE value

4.4 Evaluation Criteria

Two frequently used criteria are employed to evaluate the performance of the proposed
approach. The root mean square error (RMSE) measures the average differences between the
predictions of a model and measurements of the system being modeled. The mean absolute
percentage error is the percentage expression of the differences. The two criteria are defined
in Eqs. 11 and 12, respectively:

RMSE =
√
√
√
√

1

M

M
∑

m=1

(v̂(m) − v(m))2 (11)

MAPE = 1

M

M
∑

m=1

∣
∣
∣
∣
∣

v̂(m) − v(m)

v(m)

∣
∣
∣
∣
∣
× 100% (12)

where v̂(m) and v(m) are the prediction and the true measurement of the mth group of data.

4.5 Results and Discussion

We compare the forecasting results of the proposed learning-based integration framework
with those of the candidate models, which are, as mentioned, the most widely used models
in traffic flow forecasting. Furthermore, we also provide the results of the three strategies
equipped with the framework. The forecasting results of the three datasets are shown in

123



T. Zhou et al.

Tables2, 3 and 4, respectively. It is observed that, for all the three datasets, our framework
achieve more accurate results than the candidate models.

For the dataset of Amsterdam motorways, conditional expectation strategy achieves the
lowest RMSE in all measurement locations in terms of both 5-min average aggregation
and 10-min average aggregation, while the selective integration strategy achieves the lowest
MAPE in terms of both 5-min average aggregation and 10-min average aggregation. The 5- or
10-min average aggregation is the average vehicles per hour in 5 or 10min, respectively,which
is in consensus with the previous studies [54,60]. Note that the results of our framework,
regardless of which strategy is employed, are much better than those of the candidate models.
For example, compared with the RMSEs of ANN, which achieved the best results among
the candidate models, the RMSEs of our conditional expectation strategy decrease 26.5,
21.9, 24.2 and 27.7% at A1, A2, A4, and A8, respectively. The results demonstrate the
proposed framework can better deal with the large variations of traffic flow, which is one of
the main challenges of traffic flow forecasting, than most existing models. This is because
the representation learning scheme (i.e., the SAE) equipped in our framework can implicitly
yet effectively estimate the capability of a candidate model in forecasting the traffic flow
under the current condition, and dynamically integrate several (or all) models to achieve
more accurate results. It is worthwhile to note that, in most cases, the performance of 10-min
average aggregated traffic flows are better than that of 5-min average aggregated ones, because
the 10-min aggregation has fewer fluctuations. Since the longer time period is extended, the
fewer fluctuations the average traffic flow suffers. Although the extension of forecasting time
period increases the difficulty of the forecasting, the noises are also reduced by the average
operation with the extending period.

For the dataset of PeMS, Table3 presents the performance of top 10 busiest measurement
stations from 1254 individual ones. It is observed from Table3 that our framework outper-
forms the candidate models in terms of both RMSE and MAPE. Among the three strategies,
in most cases, the selective integration strategy achieves the best results, demonstrating the
effectiveness of this strategy in handling dataset with a large number of measurement loca-
tions.

The experimental results of TDAD dataset are listed in Table4. Compared with the can-
didate models, our framework achieves much better results in all four detection locations in
terms of both 5-min aggregation and 10-min aggregation, demonstrating the effectiveness
of the proposed framework. Note that the concepts of 5-min aggregation and 10-min aggre-
gation here are different from the concepts in the dataset of Amsterdam motorways. The
aggregation strategy of the dataset from Amsterdam is the average vehicles per hour in the
last 5 or 10min, which is the same as [54,60]. The aggregation strategy of the second and
third dataset is the total vehicles within 5 or 10min, which is the same as [9,22,30,58]. In
this regard, the RMSEs of 5-min aggregations are smaller than those of 10-min aggregations
on the second and the third dataset.

Comparing the forecasting performance of the strategies, in the first dataset, when the
traffic flow is low, especially late at night or early in the morning, small prediction errors
cause a large relative error, as a result, making strong impacts on theMAPEbutwithout strong
impacts on the RMSE. The strategy 1 may integrate some unsuitable models to degrade the
MAPE, especially at these moments, so the MAPE of strategy 1 is not as good as strategy
3. However, these small errors have very few impacts on the RMSE. The following reasons
may account for the phenomenon that the performances of the three strategies cannot reach
a consensus. First, the data of the first dataset are aggregated in vehicles per hour, so the
corresponding values are large than that of PeMS and TDAD. Second, the data of the first
dataset are without high correlations, while some data in the PeMS dataset are collected from
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Table 4 The performance of the proposed framework and the candidate models on TDAD dataset

ES088D ES855D ES645D ES708D

5min 10min 5min 10min 5min 10min 5min 10min

SVR RMSE 21.85 38.23 18.85 34.47 15.84 24.76 13.85 22.15

MAPE 9.42 7.76 13.98 11.72 11.55 9.02 10.99 8.74

HA RMSE 25.74 47.63 23.99 47.25 19.10 36.11 17.04 29.51

MAPE 10.19 9.42 17.21 16.15 13.18 12.97 12.39 11.05

RW RMSE 24.71 43.13 20.30 38.43 18.80 29.78 17.01 25.45

MAPE 10.79 8.60 15.21 13.20 13.41 10.53 12.78 9.95

AR RMSE 22.12 39.23 19.19 36.66 16.12 27.72 14.22 23.02

MAPE 9.68 8.35 14.80 14.17 12.08 10.65 11.44 9.50

ANN RMSE 22.10 39.21 19.14 36.35 16.09 27.68 14.21 23.02

MAPE 9.60 8.31 14.27 13.01 11.92 10.35 11.35 9.51

KF RMSE 23.88 41.88 20.91 41.52 17.34 31.47 15.33 25.89

MAPE 9.92 8.74 14.83 13.29 12.38 10.38 11.62 9.83

Strategy1 RMSE 15.21 33.05 11.56 28.65 10.04 22.95 9.50 19.38

MAPE 5.79 5.96 7.84 8.67 6.17 7.01 6.46 6.62

Strategy2 RMSE 14.66 33.70 11.30 28.61 9.63 23.35 9.01 19.60

MAPE 5.42 5.90 7.42 8.35 5.75 6.87 5.94 6.44

Strategy3 RMSE 14.64 33.40 11.29 28.57 9.64 23.22 8.99 19.44

MAPE 5.45 5.84 7.43 8.36 5.76 6.84 5.96 6.38

Bold represents the lowest RMSE or MAPE value

adjacent stations. Third, the data of the first dataset are collected from the freeways, while the
data of the second dataset are collected from the freeways and the ramps, and the data from
the third dataset are collected from the interstates. Although the performances vary from
dataset to dataset, we find some common ground. The MAPE of strategy 3 is slightly better
than that of strategy 1 and strategy 2 on the first and second dataset. On the third dataset, the
strategy 3 outperforms 3/4 of the 10-min forecasting by the MAPE, and the rest one is very
close to the winner. We can draw a conclusion that selective integration can help to reduce
mean absolute percent error.

In order to explore the working mechanism of the proposed framework, we take mea-
surement location the A2 as an example, and collect the prediction errors (Fig. 5a–f) and
corresponding suitability probabilities figured out from our framework (Fig. 5g–l) of all can-
didate models. Among them, Fig. 5a, b are the results of two weekend days while others
are the results of workdays. It is observed that the prediction errors of all candidate mod-
els vary so greatly from time to time that we cannot find a single model has been keeping
outperforming others during a week. Each model has its suitable periods with low predic-
tion errors. For example, when the traffic flow keeps stable at noon, the RW model usually
achieves better results than other models, while during the racing time in the morning, the
KF model achieves smaller prediction errors than others. In this case, in order to achieve
more accurate forecasting results, we can choose suitable models for a specific moment to
counteract the great variations of traffic flows based on the suitability probabilities figured
out from our learning-based framework. As shown in Fig. 5g–l, the framework can dynami-
cally assign different suitability probabilities to each model at every moment. It is observed
that the framework assign high probabilities to KF model and SVR model when the traffic
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Fig. 5 a–f The predication errors of candidate models in a week at measurement location A2 in the dataset
of Amsterdam motorways, and g–l the corresponding suitability probabilities

flow increases or decreases dramatically while the RW model has high probabilities when
the traffic flow is stable. Thus, the proposed learning-based framework can always achieve
relatively accurate forecasting results.

Finally,we report several typical yet challenging scenarios to demonstrate the effectiveness
of the proposed framework in dealing with variations and uncertainties of traffic flow. In these
scenarios, a single model is difficult to achieve satisfactory forecasting.
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Fig. 6 a–f Predictions of various methods under several typical yet challenging scenarios and g–l the corre-
sponding suitability probabilities

Figure6a–c show the measurements and predictions of various methods for three scenar-
ios, where the traffic flow quickly increases from around 2000 vehs/h to around 4000–4500
vehs/h in one hour at the racing time. In these cases, ANN, AR and RW are incapable of
achieving accurate results, as shown in Fig. 6a–c. Figure6g–i demonstrate the our framework
assign these models lower suitability probabilities in these scenarios.

The underlying rationale is that ANN and AR models highly depend on the quality of the
training data. They tend to remember the historical traffic flow, and when similar traffic flow
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appears, they figure out the prediction based on what they remembered before. However,
this mechanism usually fails in the cases where the traffic flow is dramatically changed.
It is obvious that there are great gaps between the prediction results obtained from ANN
and AR and the measurements, as shown in Fig. 6a, b, while our framework, regardless of
which strategy is employed, can achieve satisfactory predictions close to the measurements.
In Fig. 6c, the RW model also cannot deal with the large variations of traffic flow within a
short period, leading to inaccurate predictions. However, the reason is theoretically different
with that of ANN and AR models. The RWmodel always walks back one step, which means
that it predicts the traffic flow at next moment as the current moment, so the predictions fail
to reflect the sudden changes of traffic flow. It is worthwhile to note that, in all the three cases,
our framework performswell to generate reliable forecasting results close to the ground truth.

Figure6d, e show the measurements and predictions of various methods in a case that an
accident caused traffic congestion. The traffic flow quickly drops from around 5000 vehs/h to
around 4200 vehs/hwithin 20min.While theKFmodel overshoots the ground truth by a large
margin (as shown inFig. 6d), theHAmodel cannot quickly response to this accident (as shown
in Fig. 6e). The corresponding probabilities for Fig. 6d, e are shown Fig. 6j, k, respectively. In
these two cases, the KF and HA are assigned with relatively low probabilities. For example,
in Fig. 6d, the Kalman filter is overshooting from the 3rd 10-min to the 4th 10-min. Figure6j
shows the probability given by the deep network, in which the probability of the Kalman
filter is relatively low for the 3rd 10-min to the 4th 10-min. Thus, no matter what strategy is
chosen, the negative influence of the Kalman filter will be mitigated. Note that the forecasting
result every step may not be as good as the most suitable candidate model every step, but our
framework has learned to assigned the suitable candidate models with high probability. From
Fig. 5, we can see that the suitable candidates are often assigned high probabilities every step,
so the overall performance for aweek or longerwill bemuch better than that of individual can-
didates, since the performances of the individuals vary from time to time. It is why our frame-
work achieves much better performance than the candidate models in a week time or longer.

Figure6f shows the measurements and predictions of various methods in an afternoon
where the traffic flow varies quite greatly. In such a case, SVR model’s predictions deviated
far from the measurements. This is because the SVRmodel is trained in a supervised manner
to learn a function between the input traffic flow and the output by mapping the input into a
higher dimensional space, and it is hard to train a very effective SVR model within limited
training dataset. The bad performance of SVR model can also be observed in Fig. 5a–f. Note
that our framework can still achieve good forecasting results in this case.

In the end, we compare the performance of the three proposed strategies and the stacked
autoencoder proposed by Lv et al. [30]. The stacked autoencoder is trained in a layerwise
greedy fashion on the dataset ofAmsterdammotorways. The spatial and temporal correlations
are inherently considered in the model. The deep architecture of the SAE is set to [120, 60,
30]. The scaling parameter for l2 weight regularization penalty in Eq.4 is set to 0.1. The
sparsity is set to 0.03. The top of the SAE is connected to a logistic regression layer. The
forecasting results in 10-min granularity are shown Table5. From Table5, we can find that
the framework outperforms the SAEmodel, which appears to attribute the following reasons.
First, the logistic regression layer attaches to the top of the SAE may not take the best effect
for all the traffic conditions in spite of the ability of the SAE to learn the internal relationship
inside the traffic data.On the other hand, our framework is able to choose the suitable predictor
dynamically. Second, the SAE maintains the traffic state in the hidden units which implicitly
storage the historical traffic state. The SAE with logistic regression layer may find many
feasible solutions for the training set, which may take the risk to choose a poor one. The
ensemble of heterogeneous predictors helps to reduce this risk [60].
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Table 5 The forecasting results
of the proposed framework and
the SAE model on dataset of
Amsterdam motorways

A1 A2 A4 A8

SAE RMSE 295.91 203.24 219.68 160.79

MAPE 11.92 10.23 11.87 12.03

Strategy1 RMSE 220.10 166.13 171.15 120.28

MAPE 8.09 7.23 7.46 7.53

Strategy2 RMSE 234.34 189.24 176.68 123.68

MAPE 7.86 6.91 7.37 7.34

Strategy3 RMSE 224.26 178.77 171.43 120.37

MAPE 7.70 6.85 7.21 7.21Bold represents the lowest RMSE
or MAPE value

5 Conclusion

In this paper, we propose a novel learning-based framework to improve the accuracy of
dynamic traffic flow forecasting by integrating a set of representative models that are widely
used in intelligent transportation systems nowadays. We employ stacked autoencoder (SAE)
to select an optimal model or an optimal subset of models to predict traffic flow according
to the current situation in a real-time manner. A model-driven mechanism is developed to
automatically label the traffic flow data and then the labeled data can be applied to train the
SAE.Three strategies are also developed in the proposed framework toflexibly and effectively
integrate the predictions fromdifferent candidatemodels. Extensive experiments demonstrate
that our framework can overcome the limitations of previous models in dealing with large
and sudden variations of traffic flow, and achieve much better forecasting performance.
Future investigations include evaluating the framework on more real traffic flow datasets and
promoting its application in intelligent transportation systems.
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