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a b s t r a c t 

Accurate and timely traffic flow forecasting is critical for the successful deployment of intelligent trans- 

portation systems. However, it is quite challenging to develop an efficient and robust forecasting model 

due to the inherent randomness and large variations of traffic flow. Recently, the stacked autoencoder has 

been proven promising for traffic flow forecasting but still exists some drawbacks in certain conditions. 

In this paper, a training samples replication strategy is introduced to train a series of stacked autoen- 

coders and an adaptive boosting scheme is proposed to ensemble the trained stacked autoencoders to 

improve the accuracy of traffic flow forecasting. Furthermore, sufficient experiments have been conducted 

to demonstrate the superior performance of the proposal. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Traffic flow forecasting, especially short-term traffic flow fore-

asting, is a critical issue for intelligent transportation systems,

ecause the traffic control actions highly depend on the accurate

orecasting of traffic flow. Besides, the public can also benefit from

he proactive forecasting. 

Traffic flow does not only exhibit seasonality obscured by noise,

ut also reveals stochastic behaviors, which are affected by exoge-

ous factors, such as unexpected incidents or weather [1] . Hence,

his task is still a great challenge due to the large variation and

nherent uncertainties of traffic flow. 

A variety of theories and approaches have been proposed

or traffic flow forecasting in the literature [2] . The conven-

ional forecasting approaches can be generally classified into

on-parametric methods and the parametric ones. Historical av-

rage [3] , Kalman filtering methods [4–6] , exponential smoothing

7–9] , auto-regressive integrated moving average (ARIMA) model

10–12] , seasonal autoregressive integrated moving average

SARIMA) [13–15] multivariate time series models [16–18] , spectral
∗ Corresponding author. 
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nalysis [1,19] and the structural time-series model [20,21] are

rouped into parametric approaches, whereas artificial neural

etwork (ANN) [22,23] , non-parameter regression models [24] ,

upport vector machines (SVMs) [25,26] , fuzzy logic system meth-

ds [27–29] , and support vector regression (SVR) [30,31] are the

on-parametric ones. However, the existing techniques have their

rawbacks. For example, the historical average is paralyzed to the

nexpected incidents; the Kalman filtering is prone to producing

vershoot; the learning based methods are high depended on the

uality of the training samples. Moreover, these methods require a

onsiderable amount of engineering skill and domain expertise of

he local traffic condition. 

Recently, deep learning has drawn a lot of academic and in-

ustrial intentions, which can automatically discover the implicit

elationships inside the data using a general-purpose learning

rocedure [32] . Deep learning techniques have also been proven

romising for traffic flow forecasting [33,34] . Huang et. al. [33] and

v et. al. [34] applied deep belief networks (DBN) and stacked

utoencoder (SAE) to this task, respectively. They trained the deep

rchitectures by minimizing the error between the outputs and

he ground truth, which learn the inherently spatial and temporal
orrelations with rich accounts of data. Both of their methods 
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are demonstrated effective and efficient for real-time traffic flow

forecasting. 

The traffic flow forecasting by deep learning techniques involves

sequential inputs of the traffic state to predict the traffic state next

moment. The deep networks maintain the traffic state in the hid-

den units that implicitly storage the historical traffic state. How-

ever, the statistical problem arises when the historical traffic data

is not enough, since the deep learning techniques may find many

feasible predictors to give accuracy predictions for the training

data, but fail to forecast the unknown cases [35] . Although the

traffic flow data are easily collected by loop detectors, the traffic

condition varies with the development of economy and society so

rapidly that the period of training data cannot last too long. For

small traffic flow data sets, unsupervised pre-training helps to pre-

vent overfitting [36] . In a recent theoretical and empirical research,

large numbers of saddle points with zero gradients are scattered

on the landscape [37] , especially for datasets with low dimensions

such as traffic flow data. Around these points, the gradient is up-

ward in most dimensions and downward in the remainder [38] .

Thus, a individual network for traffic flow forecasting may stick in

these poor local minima, i.e., the computational problem. Due to

the large variation and inherent uncertainties of traffic flow, there

are unknown cases that cannot be predicted by the trained net-

work, because the true hypothesis may be outside the hyperspace

supported by the training data set. 

The most common way to deal with these shortcomings is to

increase the size of the deep networks, such as the depth and the

width [39] . Lots of recent publications focus on training deeper

networks with a large amount of training data [40–42] , and the

computational resources are exponentially increasing with the in-

crease of the network size. Meanwhile, some researchers attempt

to ensemble relatively shallow networks to reduce the blow-up

of uncontrolled computational complexity. For example, Cortes et.

al. [43] reported achieving higher performance by DeepBoost algo-

rithm on UCI datasets and MNIST datasets. The main idea behind

this algorithm is drawn different weight to different deep hypothe-

ses. Another idea by Huang et. al. [44] is to build a boosting model

according to the reconstruction error of the training data, whose

idea is that the result becomes less reliable when the reconstruc-

tion error increases. These attempts somewhat widen the networks

by adaptive projections in the top layer, as opposite to the fixed

nonlinear projections, such as sigmoid or ReLU. 

In this study, we introduce a boosting scheme for the stacked

autoencoder network to improve the accuracy of traffic flow fore-

casting. Comparing with [43,44] , there are two purposes of our

boosting scheme. The first one is similar but not exactly the same

as [44] , we use prediction error to retrain the stacked autoencoders

by rearranging the training data, since the reconstruction error is

the measurement of the ability of the deep network to reproduce

the input, while the prediction error is the measurement of the

generalization ability of the deep network. The second idea comes

from the weather forecasting [45,46] and ocean modeling [47] . In

the climate forecasting, a series of simulation models run under

variant initial settings to forecast a series possible projections of

future weather. The weighted average serves as the best guess of

the future weather, since individual model biases may be partially

canceled. In practice, the weighted average is likely to be more ac-

curacy than any individual prediction [46] . Different from the cli-

mate forecasting tasks, we use an adaptive ensemble strategy to

integrate the stacked autoencoders, which has been proven to be

a useful tool to handle uncertainties in model initial conditions,

model parameters, and model structures [4 8,4 9] . In our framework,

the training data are separated for training and for validation. The

prediction error on the validation set is calculated. Then the sub-

sequent SAE will get more simulations by rearranging the training

data according to this error. The importance of this SAE is deter-
ined by the prediction error. Finally, we exhaustively search over

ll feasible traffic flow rate to find a prediction to satisfy as many

s possible predictions by the ensemble SAEs according to their

mportance. 

The contributions of this paper can be summarized as follows: 

• A training sample replication strategy is introduced to train a

series of stacked autoencoders; 

• An adaptive boosting scheme is proposed to ensemble the

trained stacked autoencoders; 

• Sufficient experiments are conducted to demonstrate the per-

formance of our proposal. 

The rest of this paper is organized as follows. The second part

s the methodology and the third is the empirical study of the real

orld data from Amsterdam, Netherland. Then the conclusions fol-

ow. 

. Methodology 

In this section, the stacked autoencoder (SAE) deep learning

echnique is employed to construct multiple models for traffic flow

orecasting. And then an ensemble scheme based on δ-agree Ad-

Boost regression is introduced to boost the learned models. 

.1. Stacked autoencoder 

The stacked autoencoder network is one of state-of-the-art

eep learning techniques. SAE is a kind of neural networks, whose

ayers are unsupervised trained layer-wise. Each layer is trained by

onstructing an autoencoder. An autoencoder is a neural network

ith only one input layer, one hidden layer, and one output layer.

he output layer is expected to reproduce the input, so the hidden

ayer can be seen as a kind of encodings of the input layer. After

he layer-wise training, the weights of the layers could be initial-

zed to sensible local suboptimal [32] . Then the SAE will achieve a

iscriminant one by fine-tuning with the labeled data. See [34] for

ore details. 

Unlike the deep convolutional neural network (DCNN), the SAE

s a full-connected network. One of the motivations of the convo-

utional and pooling layers of DCNN is to reduce the spatial and

emporal complexity by ultimately moving the fully connected ar-

hitectures to sparsely connected ones [39] , as it can hardly learn

 deep full-connected network from the full-size image data sets

ue to the dramatically computational complexity. The dimension

f traffic flow data are relatively low comparing to that of the im-

ges, so it is reasonable to construct full-connected networks. Lv

t. al. [34] have demonstrated that the SAE network can success-

ully discover the spatial and temporal correlations from the traffic

ow data. Hence, the SAE [34] is taken as the preliminary model

o boost in this study. 

.2. δ-agree AdaBoost regression 

Although the SAE is demonstrated promising, robust and com-

arable in the reported study [34] , the SAE for traffic flow fore-

asting may suffer from some drawbacks in certain conditions. As

nalyzed, the statistical problem occurs when the amount of data

or training is small as the input period of the data would not last

oo long. There may be a large amount of feasible solutions for the

raining data, some of which may have poor generalization abili-

ies. If only one individual SAE is employed for traffic flow fore-

asting, we are at the risk of choosing a poor one. This encourages

s to construct an ensemble of a series of SAEs, whose votes may

elp to reduce the risk of choosing a poor prediction. The compu-

ational problem is inevitable, since the optimal training of neural

etworks is NP-hard [50] . Although the poor local minima are not
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 serious problem that the networks often reach similar general-

zation performance in practice, the greedy nature of gradient de-

cent optimization still pushes us to the edge of this danger. An

nsemble constructed by different local search with different deep

rchitectures or different initial value may have a better approx-

mation than the individual preliminary. This motivates us to en-

emble SAEs with different architectures and different initial value,

nd rearrange the training data to retrain the subsequence SAEs.

he representational problem is subtle for the traffic flow forecast-

ng tasks. Since the training data are finite, the deep learning algo-

ithms will stop searching when they fit all the training samples.

he groundtruth hypotheses may be outside the hyperspace sup-

orted by the training samples. The weighted combination of the

ypotheses is able to expand the hyperspace of training samples. 

The deep architectures for the SAEs are explored in [33,34] .

oth of them report that the feasible number of the hidden lay-

rs is around three and the feasible number of hidden units is no

ore than 500. For the consideration of computational complexity,

he candidate deep architectures of this study range from one to

our hidden layers with 10–300 hidden units following the sugges-

ion in [34] . 

The aforementioned stacked autoencoder aims to learn the hy-

othesis denoted as G(·) , which predicts the future traffic flow

ate by given the current traffic flow rate. To further depict the

nsemble, we firstly define each group of traffic flow data x as

 v i, j } i =1 , ... ,M, j= t, ... ,t−N+1 , where v i, j is the traffic flow data on the i th

easurement location at j th time interval. The traffic flow predic-

ion of next time interval on the i th location by k th SAE network

an be denoted as G (k ) 
i 

(x ) . Without loss generality, we simplify the

ypothesis G (k ) 
i 

(x ) as G (k ) (x ) omitting the location indicator i . And

e also denote the prediction of the s th sample as ˆ y s = G (k ) (x s ) .

hen the training data set can be denoted as T = { (x s , y s ) } s =1 , ... ,S ,

here y s is the groundtruth of ˆ y s , and S is number of training sam-

les. The boosting algorithm discussed following is always focused

n a certain location, and it is easy to be extended to all locations.

In order to improve the forecasting accuracy, we encourage the

AE to get more stimulations by training samples with large pre-

iction error, which often occurs when the traffic flow is heavy.

ctually, these moments are critically important to the intelli-

ent transportation system, which are likely to be the commuting

ime and easily congested. We introduce a δ-agree scheme for the

oosting phase. The δ-agree scheme is defined as a discriminative

unction in Eq. (1) . 

(|G (k ) (x s ) − y s | − δ) , (1) 

here I(x ) = 

{
1 , if x > 0 , 

−1 , otherwise . 

Eq. (1) means the case that the prediction error exceeds δ will

ake positive effect in the succeeding weighting scheme, vice versa.

his parameter separates the forecasting results into two part as a

atent parameter. For some extreme cases, the prediction error is

arge. Then the next SAE will be trained by taking more consider-

tion on these cases. 

Then we introduce a weight w 

(k ) 
s for every sample for the k th

AE. Initially, the weight of the samples is equal w 

(1) 
s = 

1 
S for the

rst SAE. The discriminative error of the SAE is calculated as: 

 

(k ) = 

1 

2 

S ∑ 

s =1 

w 

(k ) 
s [ I(|G (k ) (x s ) − y s | − δ) + 1] . (2)

Then the importance of this SAE is determined by its discrimi-

ative error as: 

(k ) = 

1 

2 

log 
1 − ε (k ) 

ε (k ) 
. (3) 

In Eq. (3) , the smaller discriminative error of the SAE achieves,

he more importance it gains. The new weights of the samples can
e updated according to the discriminative error and the impor-

ance of this SAE. 

 

(k +1) 
s = 

w 

(k ) 
s 

Z 

(k ) 
e α

(k ) I(|G (k ) (x s ) −y s |−δ) , (4) 

here Z 

(k ) = 

∑ S 
s =1 w 

(k ) 
s e α

(k ) I(|G (k ) (x s ) −y s |−δ) is a normalization fac-

or. 

In order to let the next SAE get more stimulations with these

xtreme cases of large prediction error, so we expand the training

ata set by introducing a replication factor r (k ) 
s = Cw 

(k ) 
s S. C is a con-

tant indicating the average replication times, in our experiment C

s set to 100. 

We replicate the s th training sample r (k ) 
s times (rounding-off) to

onstruct a new data set. With this data set, we try to train the SAE

ith different deep architectures and initial values. The best deep

rchitecture for this data set is by cross-validation of the candidate

rchitectures. 

After all the SAEs are trained, for a testing sample of traffic flow

 , the prediction is depicted as: 

ˆ 
 = argmin ˆ y ∈ [0 , v max ] 

K ∑ 

k =1 

α(k ) I(|G (k ) (x ) − ˆ y | − δ) , (5)

here v max is the maximum capacity of traffic flow rate on that

ocation, and ˆ y is the traffic flow rate to predict, which is assumed

s a natural number. 

Firstly, K trained models are employed to make K predictions.

hen we exhaustively enumerate all feasible traffic flow rate from

 to v max to search an optimal ˆ y . In Eq. (5 ), α( k ) is the importance

f the k th SAE, which is determined by Eq. (3) according to the

iscriminative error of the k th SAE. The larger discriminative er-

or is, the less importance the k th SAE gains. On the other hand,

(·) is −1 if the error between ˆ y and the prediction by the SAE is

o more than δ. Thus, in order to minimize Eq. (5) , the optimal ŷ

s expected to meet the predictions made by as many SAEs of high

mportance as possible. In another word, this value by Eq. (5) satis-

es as many as possible predictions of the ensemble SAEs to elim-

nate the short-sight of the individual SAE according to their im-

ortance. 

This algorithm can be summarized as follows. 

lgorithm 1 Training the boosting algorithm for SAEs. 

equire: T = { (x s , y s ) } s =1 , ... ,S , δ, C 

nsure: α(k ) , G (k ) (·) , k = 1 , . . . , K

1: k = 1 

2: w 

(k ) 
s = 

1 
S 

3: while k ≤ K do 

4: replicate T according to r (k ) 
s = Cw 

(k ) 
s S

5: train and cross validate to choose the best deep architecture

for the SAE G (k ) (·) with the replicated samples 

6: calculate the discriminative error ε (k ) = 

1 
2 

∑ S 
s =1 w 

(k ) 
s [ I(|G (k ) (x s ) − y s | − δ) + 1] 

7: if ε (k ) ≥ 1 
2 then 

8: continue 

9: end if 

10: calculate α(k ) = 

1 
2 log 1 −ε (k ) 

ε (k ) 

11: update the weight w 

(k +1) 
s = 

w 

(k ) 
s 

Z (k ) e 
α(k ) I(|G (k ) (x s ) −y s |−δ) 

12: k = k + 1 

13: end while 

. Case study 

In this section, the traffic flow data from four motorways A1, A2,

4 and A8 ending on the ring road (A10 motorway) of Amsterdam

re used for the empirical study. 
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Fig. 1. The four motorways namely A1, A2, A4, and A8, which end on the ring road 

of Amsterdam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d  

t

R  

M  

w  

o

3

 

s  

T  

g  

t

 

w  

t  

t  

F  

c  

t  

n  

p  

i  

d  

n  

t  

e  

a  

i  

T  

i  

e  

e

F  

e

 

t  

c  

e  

a  

b  

b  

t  

i  

r  

p  

t  

r  

t  

c

i  

r  

t  

s  

c  

S  

l  

s

3.1. Data description 

The real world data was collected from four motorways by

Wang et al. [51] , namely A1, A2, A4, and A8, which end on the

ring road of Amsterdam (the A10 motorway), as shown in Fig. 1 .

We simply depict the four motorways as follows. The four mea-

surement sites locate on the motorways a short distance before the

merge points to the ring road. The data was provided from May 20,

2010, to June 24, 2010, with 1-min aggregation, i.e., the number of

vehicle per hour in a certain minute, collected by MONICA sensor. 

• The A1 motorway connects the city of Amsterdam with the

German border, which is also a European route. The European

route E30 follows the A1 motorway from the interchange Ho-

evelaken in Netherlands. There is the first high-occupancy ve-

hicle (HOV) 3+ barrier-separated lane in Europe on A1 motor-

way. The traffic flow in this HOV lane dramatically changes over

time, making the forecasting quite challenging. 

• The A2 motorway is one of the busiest highways in the Nether-

lands, which connects the city of Amsterdam and the Belgian

border. In our experiment, we use the data collected in 2010

before the motorway is widened to examine if the proposed

framework can perform well with congestions. 

• The A4 motorway is part of the Rijksweg 4, which starts from

Amsterdam to the Belgian border. The A4 motorway has prior-

ity from the eastern direction until the interchange De Nieuwe

Meer, then travels to the southeast. 

• The A8 motorway starts from the A10 motorway at interchange

Coenplein, ends at Zaandijk less than 10 km. 

The raw data mix with incorrect measurements, which are ze-

ros for a long period or negative values. We simply fill the in-

correct data by averaging measurements of the same moments of

other weeks. 

3.2. Evaluation criteria 

Two frequently used criteria are employed to evaluate the per-

formance of the proposed approach. The root mean square error

(RMSE) measures the average differences between the predictions

of a model and measurements of the system being modeled. The

mean absolute percentage error is the percentage expression of the
ifferences. The two criteria are defined in Eqs. (6) and ( 7 ), respec-

ively: 

MSE = 

√ 

1 

M 

M ∑ 

m =1 

( ̂ v (m ) − v (m )) 2 (6)

AP E = 

1 

M 

M ∑ 

m =1 

∣∣∣∣ ˆ v (m ) − v (m ) 

v (m ) 

∣∣∣∣ × 100% (7)

here ˆ v (m ) and v ( m ) are the prediction and the true measurement

f the m th group of data. 

.3. Experimental setup 

As discussed in [4,51,52] , the study of traffic flow forecasting

hould not be of interest to predict minute-by-minute fluctuations.

herefore, the 10-min average, which is the average of 1-min ag-

regation in subsequent 10 min, is chosen for the forecasting task

he same as [51] . 

The collected data are divided into two parts, the first four

eeks are used for training and the rest are used for testing. The

raining data are divided into ten parts, nine of ten are for training

he SAE, and the other is for validation after every training epoch.

ollowing the instruction by Lv et. al. [34] , the candidate deep ar-

hitectures for the traffic forecasting tasks are limited to no more

han 4 hidden layers, the hidden units of each layer are limited to

o more than 300. The scaling parameter for weight regularization

enalty in is set to 0.1. The sparsity is set to 0.03, see [34] for the

nterpretations of regularization penalty and sparsity. We randomly

rop out some measurements of the training inputs to improve the

etwork performance (see [53] for more details). The batch size in

his tasks is the entire training samples, since the dimension of

ach sample is relatively small comparing to that of images. Thus,

ll the training samples pass forward and backward every iteration

n one epoch without considering the limitations of the memory.

he maximum iterations are limited to 10 k. Similarly, all the val-

dation samples pass forward and backward every iteration in one

poch. The validation procedure is conducted after every training

poch. The optimization method is the limited-memory Broyden–

letcher–Goldfarb–Shanno (LBFGS) algorithm [54] , a typical gradi-

nt descent algorithm. 

Another two parameters are the number of ensembles K and

he δ. To evaluate how these two parameters influence the fore-

asting performance, we conduct the experiments. The number of

nsembles K is tested from 10 to 100. The forecasting performance

t A1 is illustrated in Fig. 2 with a different number of ensem-

les. The RMSE decreases sharply when the number of ensem-

le K increases until 40, while the MAPE keeps decreasing until

he number of ensemble reaches 70. The performance of the SAEs

s boosted up as the number of ensembles increases in a certain

ange. However, if too many ensembles are integrated, the com-

utation demand would be too large. The δ is a latent parame-

er to be set to separate the extreme cases of large prediction er-

or. As defined in Eq. (1) , if the error between the prediction and

he groundtruth larger than δ, I will be 1, otherwise −1 . Thus, the

ases with large prediction error will weight more in Eq. (4) . The δ
s tested from 100 to 250 shown in Fig. 3 . There may be two main

easons that the δ has a good level of tolerance. First, if some ex-

reme cases with large prediction error appear in the prior SAE, the

ubsequent SAE is trained by taking more consideration on these

ases. Then the subsequence SAE may well deal with these cases.

econd, the ensemble SAEs with large discriminative error weight

ess in Eq. (3) . These two parameters are listed in Table 1 for the

ucceeding experiments. 
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Fig. 2. Forecasting performance with different number of ensembles. 

Fig. 3. Forecasting performance with different δ. 

Table 1 

The parameters K and δ for the succeeding 

experiments. 

A1 A2 A4 A8 

K 70 50 90 70 

δ 170 120 150 100 
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Table 2 

Configurations of ANN model. 

Parameters Values 

Hidden layers 1 

Goal 0.001 

Spread 20 0 0 

MN 40 

DF Default 
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.4. Performance evaluation 

Table 3 have several comparisons with various commonly used

odels integrated in intelligent transportation systems including

he state-of-the-art ones. The hybrid particle swarm optimization

upport vector regression method (SVR) is detailed in [55] . The his-

orical average model (HA) and the random walk method (RW) are

sed as the control methods in [31] . These two methods are often

sed as the baseline for a new one. The artificial neural network

ANN) is detailed in [56] . The Kalman filtering method (KF) is de-

ailed in [4] . The least squares boosting is the ensemble of simple

odels [57] . The stacked autoencoder method (SAE) is proposed by

v et. al. [34] . The last one is our proposed method. The concepts

f these control models are simply introduced as follows. 

istorical average. This model predicts for a given time of the day

he average of the same time in the same day in previous weeks. 
andom walk. This model simply predicts the traffic flow next mo-

ent as equal to the current condition. 

uto regression. The autoregression model is a representation of a

andom process and it has been widely used in traffic flow fore-

asting due to the randomness of the traffic flow. In the autore-

ression model with order p , the current traffic flow is represented

y a weighted combination going back p periods, following a ran-

om disturbance in the current period. In this regard, the order p

s critical for the autoregression models. On the other hand, if the

rder is too high, more coefficients need to be estimated, and ad-

itional errors will consequently be introduced. The order in our

xperiment is set to 8 by cross-validate of our training data. 

upport vector machine regression. For the support vector machine

egression model, several parameters need to be set beforehand.

he regression horizon is set the same as AR model. We use ra-

ial basis function (RBF) as the kernel type in this study. The cost

arameter C is set to the maximum difference between the traf-

c flow. The width parameter γ and the ε-insensitive are deter-

ined by particle swarm optimization. The width parameter γ for

he RBF kernel is 3 × 10 −6 and the ε-insensitive loss for the SVR is

 in this study. 

alman filtering. A wavelet denoising procedure proposed by Xie

t al. [4] is employed to preprocess the traffic flow data. We use

aubechies 4 as the mother wavelet as suggesting in [4] . The vari-

nce of the process error Q is set as 0.1 × I , where I is the iden-

ity matrix. The variance of the measurement noise is 0, since

e regard the measurement is correct. The initial state is set to
1 
n , . . . , 

1 
n 

]
, where n is set to 8, the same as Xie et al. [4] . The co-

ariance matrix of initial state estimation error is 10 −2 × I . 

rtificial neural network. We employ the artificial neural networks

ntroduced in Zhu et al. [56] . The network parameters are de-

cribed in Table 2 , where most of them are consistent with [56] . 

east squares boosting. The least square boosting (LSBoost) is one

f most popular boosting algorithm that ensembles linear regres-

ion. Kkdeniz et al. [57] have applied this method to load fore-

asting in energy day-ahead market And they declared that least

quares boosting algorithm give more robust results than SARIMA

ethod for load forecasting. In this experiment, the number of en-

embles of LSBoost is set the same as that listed in Table 1 . 

tacked autoencoder. The stacked autoencoder is trained in a lay-

rwise greedy fashion. The spatial and temporal correlations are

nherently considered in the model. The deep architecture of the

AE is set to [120, 60, 30] by cross-validation. 

We compare the forecasting results of the proposed boosting

ethod with the control models mentioned, which are often used

n intelligent traffic systems. As illustrated in Table 3 , the pro-

osal achieves more accurate results than the controls. For exam-

le, comparing with the RMSEs of SAE, which achieves the best

esults among the others, the RMSEs of our proposal decrease

.12%, 2.99%, 5.43%, and 2.95% at A1, A2, A4 and A8, respectively.
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Table 3 

The forecasting results of the proposed framework and the control 

models on dataset of Amsterdam motorways. 

A1 A2 A4 A8 

SVR RMSE 329.09 259.74 253.66 190.30 

MAPE 14.34 12.22 12.23 12.48 

HA RMSE 404.84 348.96 357.85 218.72 

MAPE 16.87 15.53 16.72 16.24 

RW RMSE 312.92 223.82 230.01 174.14 

MAPE 12.65 11.43 12.06 12.37 

AR RMSE 301.44 214.22 226.12 166.71 

MAPE 13.57 11.59 12.70 12.71 

ANN RMSE 299.64 212.95 225.86 166.50 

MAPE 12.61 10.89 12.49 12.53 

KF RMSE 332.03 239.87 250.51 187.48 

MAPE 12.46 10.72 12.62 12.63 

LSBOOST RMSE 306.33 233.88 229.78 177.52 

MAPE 13.78 14.43 12.90 14.00 

SAE RMSE 295.91 203.24 219.68 160.79 

MAPE 11.92 10.23 11.87 12.03 

PROPOSAL RMSE 280.75 197.16 207.75 156.04 

MAPE 10.65 9.85 11.06 11.63 
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The traffic flow may vary so largely at different moments a day,

or different days, i.e., the training data may not cover all the cases

occurring in the future, that the SAE is prone to the most simi-

lar results that it has learned. By taking consideration of the SAEs
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Fig. 4. Fig. 4 a–d are the predictions of proposal and the measurements in a week, and

predictions divided by the measurements), respectively. (For interpretation of the referenc
ith different importance, the boosting procedure is able to en-

emble the predictions of the SAEs to eliminate the short-sight of

n individual one. Moreover, the individual SAE may be stuck in

ome poor local minima. A series of integrated SAEs of our method

earch from different initial values and directions are more eas-

ly to find a better prediction. We also contrast the results of the

SBoost, which is a boosting algorithm integrated simple models,

.e., linear regression, and the proposal outperforms the LSBoost. In

ddition, our method gets higher accuracy than the other control

odels, because our method inherits the advantages of the SAE,

hich can automatically discover the implicit relationships inside

he data. 

Finally, we report some forecasting scenarios to demonstrate

he effectiveness of the proposed framework in dealing with vari-

tions and uncertainties of traffic flow. The predictions of the pro-

osed method are drawn with a red line, while the measurements

re done with a green line in Fig. 4 . The related error drawn in

lue line is the error between the measurements and the predic-

ions divided by the measurements. As shown in Fig. 4 , the pro-

osal achieves relatively high accuracy most of the time, except

he traffic flow is very low early in the morning or late at night.

or these cases, small prediction error still causes a large related

rror. Fortunately, we are more likely to care about the forecasting

ccuracy when the traffic is really heavy. 
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 the prediction related error (the difference between the measurements and the 

es to color in this figure, the reader is referred to the web version of this article.) 
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. Conclusion 

In this paper, we propose a novel ensemble method to improve

he accuracy traffic flow forecasting by integrating stacked autoen-

oders that have been proven promising for traffic flow forecasting,

ut still suffer from some shortcomings in certain conditions. In

rder to eliminate the short-sight of an individual stacked autoen-

oder, we propose a boosting-up scheme to improve the forecast-

ng accuracy. In this scheme, a training samples replication strat-

gy is introduced to train a series of stacked autoencoders and a

oosting algorithm is proposed to ensemble the trained SAEs. Ex-

ensive experiments demonstrate the proposal outperforming the

tacked autoencoder in dealing with traffic flow forecasting, and

chieving better forecasting performance. Future investigations in-

lude evaluating the method on more real traffic flow datasets and

romoting its applications in intelligent transportation systems. 
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