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Abstract. The accurate classification of gliomas is essential in clinical
practice. It is valuable for clinical practitioners and patients to choose
the appropriate management accordingly, promoting the development
of personalized medicine. In the MICCAI 2020 Combined Radiology
and Pathology Classification Challenge, 4 MRI sequences and a WSI
image are provided for each patient. Participants are required to use the
multi-modal images to predict the subtypes of glioma. In this paper,
we proposed a fully automated pipeline for glioma classification. Our
proposed model consists of two parts: feature extraction and feature
fusion, which are respectively responsible for extracting representative
features of images and making prediction. In specific, we proposed a
segmentation-free self-supervised feature extraction network for 3D MRI
volume. And a feature extraction model is designed for the H&E stained
WSI by associating traditional image processing methods with convo-
lutional neural network. Finally, we fuse the extracted features from
multi-modal images and use a densely connected neural network to pre-
dict the final classification results. We evaluate the proposed model with
F1-Score, Cohen’s Kappa, and Balanced Accuracy on the validation set,
which achieves 0.943, 0.903, and 0.889 respectively.
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1 Introduction

As the most common primary malignant tumor of the central nervous system,
glioma comprise approximately 100, 000 newly diagnosed cases each year [2].
According to the 2016 World Health Organization (WHO) classification, diffuse
glioma is categorized into five subtypes based on both its tumor histology and
molecular alterations, among which glioblastoma, astrocytoma and oligoden-
droglioma are further designated with genetic subgroups, including promoter
mutations in TERT, IDH mutations and chromosome arms 1p and 19q co-
deletion [14]. Glioblastoma accounts for 70–75% of all diagnoses in adults, and as
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well has the poorest prognosis with a 5-year survival rate smaller than 5%. On
the other hand, anaplastic astrocytoma and oligodendroglioma are rarer than
glioblastoma, associated with relatively better overall survivals [1,9]. The treat-
ment strategies, including adjuvant therapy selections after surgery, chemother-
apy regimens and dosing schedules, vary by different subtypes [8]. Therefore, an
accurate classification of glioma based on radiological and pathological images
would be valuable for clinical practitioners and patients to choose the appropriate
management accordingly, promoting the development of personalized medicine.

As a non-invasive clinical procedure, magnetic resonance image (MRI) reveals
the characteristics of tumor phenotypes. Thus, it has been widely used for
computer-aided diagnosis of glioma. Existing approaches usually require either
manual or semi-automatic tumor segmentation before quantitatively analyzing
3D MRI volumes, which is labor intensive and time consuming. Besides con-
sidering a single MRI sequence, it is worth to associate multiple sequences due
to the differences in signal intensities and patterns between different tissues
on them. What’s more, the enhancement patterns depending on various tumor
subtypes would also greatly enrich the information of the tumors and their sur-
rounding areas. Therefore, not only conventional non-enhanced T1-weighted and
T2-weighted images, but also post-contrast images should be investigated.

Histopathology slide is the gold standard for the cancer diagnosis. It reflects
the tumor microenvironment. The born of the digital whole slide scanner makes
it possible for computers to quantitatively analyze diffuse gliomas at the micro-
scopic level. However, even with the rapid development of computer hardware,
the extreme resolution of whole slide image (WSI) is still the obstacle towards
fully automatic clinical adoption.

In the real world scenario, it is meaningful and vital to read both radiolog-
ical and pathological images for their diagnostic values in different subtypes of
gliomas. However, manual quantification of multi-omics images is commonly sub-
jective and experience dependent. Therefore, many researchers dedicate to find
out an automatic and objective way to quantify multi-omics images. But how to
fuse the features of the images acquired from different modals in a reasonable
and interpretable manner is still unknown.

The CPM-RadPath 2020 MICCAI challenge is conducted for automatic brain
tumor classification using two different modal images, including radiology and
pathological images. Each case provides MRI of the four modalities of native
(T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2), and T2 Fluid Atten-
uated Inversion Recovery (T2-FLAIR), and an H&E stain digitized whole-slide
images(WSI) which was scanned at 20x or 40x magnification. This challenge
provides 388 glioma cases, including three types of gliomas, i.e., glioblastoma,
oligodendroglioma, and astrocytoma, divided into a training set (70% of cases),
validation set (20%), and test set (10%). In this paper, we proposed an effective
pipeline for multi-modal images tumor classification. Firstly, a segmentation-
free self-supervised feature extraction network is proposed for 3D MRI volume.
Secondly, we proposed a feature extraction model for the H&E stained WSI
by associating traditional image processing methods with convolutional neural



CNN-Based Fully Automatic Glioma Classification 499

Fig. 1. Schematic diagram of the pipeline. MRI and WSI branches are proposed to
extract radiology and pathology features. Feature fusion branch is proposed to aggre-
gate multi-modal features and predict final classification results. G, O, and A denote
Glioblastoma, Oligodendroglioma and Astrocytoma, respectively. The details of each
branch are shown in corresponding subfigures.
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network. These two feature extraction models are directly guided by the classifi-
cation labels. Finally, we fused the extracted features from multi-modal images
and used a densely connected neural network to predict the final classification
results. Three evaluation measurements of F1-Score, Cohen’s Kappa, and Bal-
anced Accuracy achieve 0.943, 0.903, and 0.889 on the validation set.

2 Related Works

In the CPM-RadPath 2019 MICCAI challenge [6], several works have achieved
great performance on automatic brain tumor classification with multi-modal
images. Pei et al. [11] segmented the brain tumor from the MRI sequence, and
then classified it by a regular 3D CNN model. But they did not discover the mas-
sive information in WSI. Ma et al. [7] used two convolutional neural networks
for radiology and pathology images respectively. ResNet34 and ResNet50 were
directly applied to extract features from WSI grayscale patches and classified
them. 3D DenseNet was employed for MRI sequence. A further regression model
was introduced for the inference. Chan et al. [3] grouped WSI tiles into several
clusters in an unsupervised manner and applied a random forest for final pre-
diction. Xue et al. [15] proposed a multi-modal tumor segmentation network by
leveraging the information from four MRI sequences. Then a two-branch network
for both MR images and pathology images was introduced for classification.

Different from the previous works, our proposed model is segmentation-free
for MRI sequences. In the meanwhile, the area where tumor cells gather is
regarded as the representative region of the tumor for the feature extraction
of pathology images. A deep neural network is finally applied to aggregate the
multi-modal image features and to make prediction.

Fig. 2. Network architecture of MRI branch. It is designed as a multi-task learning
model with a self-supervised feature reconstruction task and a classification task. The
resolution of feature maps in each layer is shown on the top of each block. The number
of the channels is shown inside the block.
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3 Methods

Figure 1 demonstrates the complete classification model, which is constructed by
three individual branches. The MRI branch and the WSI branch serve for radi-
ology and pathological image feature extraction, respectively. A feature fusion
branch is designed for aggregating multi-modal features and predicting the sub-
types of the glioma.

3.1 Radiological Features Extraction

(a) Original MR images (b) Reconstructed images

Fig. 3. The original MR images and the reconstructed images.

To extract the image features of the MRI volume, previous approaches com-
monly first segment the tumor lesion, and then extract the feature of the tumor.
However, the accuracy of the segmentation result would directly affect the final
prediction results. Moreover, since malignant tumor is invasive, the surrounding
area of the tumor is also valuable for the assessment of the tumor. Therefore, we
proposed a multi-task learning network to extract the features of MRI volume,
which is segmentation-free. Figure 2 shows the network details. The first task
is a self-supervised learning model with an autoencoder-decoder structure. It is
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a common feature compression scheme by encoding the latent features of the
input and reconstructing the original input. Figure 3 demonstrates the original
images and the reconstructed images. However, this scheme tends to learn the
pixel-wise features instead of high-level semantic features. So in the second task,
we force the network to learn and predict the subtypes of the tumor from the
latent features. L1 loss and cross entropy loss are used for the reconstruction
and the classification tasks respectively.

LL1 =
1
N

N∑

i=1

|yi − y′
i| (1)

Lce(x) = −
K∑

i=1

p(xi) log p(xi) (2)

where y′
i and yi denote the i-th pixel value of the reconstruction image and the

input image respectively. N is the total number of pixels. K denote the number
of tumor types.

The feature vector from the first fully connected layer of the second task are
extracted as the feature representation of the MRI volume. Each MRI sequence
(T1, T1Gd, T2, and T2-FLAIR) has a 1×1024 feature vector. The concatenated
feature vectors of all the MRI sequence form the final feature representation of
the radiological images.

Fig. 4. Model architecture of WSI branch. The input WSI image was firstly downsam-
pled to 2× magnification for a rough segmentation of the tissue. Then we randomly
sampled a large among of patches from the segmented region. A nuclei segmentation
approach [16] was applied for each patch sample. After sorting by the area of nuclei,
64 patched with the largest nuclei area were selected and passed into a classification
network (VGG). The features of WSI image can be obtained from the fully connected
layer of VGG network.
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Fig. 5. Nuclei segmentation results by Triple U-net [16].

3.2 Pathological Features Extraction

Due to the gigapixel of WSI, we proposed a step-by-step procedure to quantify
the pathological image, as shown in Fig. 4. We first performed a segmentation
method under 2X magnification to roughly segment the tissue. Specifically, we
introduced a color deconvolution algorithm [12] to map the WSI into H (Hema-
toxylin) channel and E (Eosin) channel, and then used the Otsu [10] to segment
the foreground and background with the intersection area of the two channels as
the rough segmentation mask of the tissue. Then we upsample the mask from 2X
to 10X magnification to obtain the segmented region at 10X magnification. After
that, we randomly sample 1000 patches (256 × 256) from the segmented region
under 10X magnification and applied a nuclei segmentation network, Triple U-
net [16]. Figure 5 shows the nuclei segmentation results. Note that, the nuclei
segmentation network was trained on a public dataset MoNuSeg [5]. 64 patches
with the largest nuclei area, which indicate the areas with dense tumor cells,
they were selected to be the representative patches of the WSI. A VGG16 net-
work [13] was introduced as the backbone of feature extraction and classification.
The VGG16 was optimized by a cross entropy loss as Eq. 2.

3.3 Features Fusion Branch

Given the representative features extracted from the radiological and patholog-
ical images, we can get (1 × 4096) MRI features and (64 × 4096) WSI features.
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Fig. 6. Feature fusion branch. Each WSI sequence is quantified as a 1 × 1024 feature
vector. Four MRI sequences form a 1×4096 feature vector which is the final radiological
image features. We can obtain a 1 × 1024 feature vector of the pathological image
features by maxpooling the 64 selected WSI patches features. Then the features of
each modal are passed into a densely connected neural network [4] and predict the
classification result.

Maxpooling operation was performed to the pathological features to downsam-
ple the features to the same dimension with the radiological features (1 × 4096).
Then the features from two modalities were passed into the feature fusion branch,
as shown in Fig. 6. Densely connected network [4] was applied to predict the sub-
types of the tumor. Cross entropy loss was utilized to optimize the network.

3.4 Implementation and Training Details

All networks were implemented on Pytroch 1.5.0 and ran on a workstation
equipped with an NVIDIA GeForce RTX 2080 Ti. The learning rates of the MRI
branch, WSI branch, and densely connected network are 0.001, 0.0001, 0.001,
respectively, and all with the learning rate decay of 0.96. All the training pro-
cesses used adam optimizer without applying the dropout layer. Triple U-net [16]
was trained on the public dataset from another MICCAI challenge MoNuSeg [5].
All the other models in the classification pipeline were not pre-trained.

4 Results

4.1 Quantitative Comparison

We evaluate the property of our pipeline with F1-Score, Cohen’s Kappa, and
Balanced Accuracy calculated on the validation set and compare with the top
four models [3,7,11,15] in CPM-RadPath 2019 MICCAI challenge. Note that, all
the quantitative results are from their respective papers. As is shown in Table 1.
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Our pipeline achieved a classification result very close to the manual label with
F1-Score of 0.943, Cohen’s Kappa of 0.903, and Balanced Accuracy of 0.889.
It outperforms three existing models and get the same performance with the
champion of CPM-RadPath-2019 in the validation set.

Table 1. Quantitative evaluation of classification results.

Models F1-Score Cohen’s Kappa Balanced accuracy

Chan et al. [3] – – 0.780

Xue et al. [15] – – 0.849

Pei et al. [11] 0.829 0.715 0.794

Ma et al. [7] 0.943 0.903 0.889

Ours 0.943 0.903 0.889

4.2 Timing Statistics

We randomly select a patient from the test set with ID: CPM19 CBICA ART 1
and provide comprehensive timing statistics of in Table 2. The resized resolution
of MRI sequences from this patient is 96× 96 × 96. The resolution of the whole
slide image is 108528 × 92767. In MRI branch, feature extraction for 4 MRI
sequences takes 10 s. In WSI branch, because of the huge resolution of the whole
slide image, it takes 701 s to read the WSI image and 227 s to sample patches,
including nuclei segmentation. The feature extraction of 64 WSI patches takes
8 s. And the final prediction only takes 2 s. Note that, the variation of the reso-
lutions of WSI images may lead to vibration of total running time. In the future,
the timing performance can be further optimized if we can effectively decrease
the time of reading WSI images.

Table 2. Timing statistics of each step (second).

MRI branch WSI branch Prediction

Read image Patch sampling Feature extraction

10 701 227 8 2

5 Conclusion

We propose an intuitive and fully automatic pipeline for glioma classification
with the input 4 MRI sequences and a H&E stained whole slide image. The pro-
posed pipeline can effectively extract and aggregate multi-modal image features
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and predict the subtypes of glioma without the necessity of any additional labels.
Our model was examined on the validation set and gave a promising result.

Since our proposed pipeline has two feature extraction branches for both
radiology and pathology images. And these two branches are supervised by the
groundtruth labels of tumor classes. So even we omit one of the modality, the
feature extraction models can still be utilized for classification. Each feature
extraction branch itself can be utilized to predict the class of glioma. But lack
of any modality will harm the classification performance.
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