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a b s t r a c t 

Nuclei segmentation is a vital step for pathological cancer research. It is still an open problem due to 

some difficulties, such as color inconsistency introduced by non-uniform manual operations, blurry tu- 

mor nucleus boundaries and overlapping tumor cells. In this paper, we aim to leverage the unique op- 

tical characteristic of H&E staining images that hematoxylin always stains cell nuclei blue, and eosin al- 

ways stains the extracellular matrix and cytoplasm pink. Therefore, we extract the Hematoxylin compo- 

nent from RGB images by Beer-Lambert’s Law. According to the optical attribute, the extracted Hema- 

toxylin component is robust to color inconsistency. With the Hematoxylin component, we propose a 

Hematoxylin-aware CNN model for nuclei segmentation without the necessity of color normalization. Our 

proposed network is formulated as a Triple U-net structure which includes an RGB branch, a Hematoxylin 

branch and a Segmentation branch. Then we propose a novel feature aggregation strategy to allow the 

network to fuse features progressively and to learn better feature representations from different branches. 

Extensive experiments are performed to qualitatively and quantitatively evaluate the effectiveness of our 

proposed method. In the meanwhile, it outperforms state-of-the-art methods on three different nuclei 

segmentation datasets. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Pathological sections are regarded as the gold standard for can-

er diagnosis since they deliver massive tumor information. Digital

athology images have now been widely used for clinical predic-

ions, like diagnosis ( Zhou et al., 2019a ), prognosis ( Yu et al., 2016 ),

etastasis ( Liu et al., 2017 ) and etc. Nuclei segmentation plays a

ital role among these clinical applications by analyzing the mor-

hological signatures of nuclei patterns in the Whole Slide Image

WSI). With the segmented cells, we can further objectively and

uantitatively evaluate the malignant tissue by measuring the dis-

ribution of tumor cells, epithelial cells, immune cells, etc. A suc-

essful segmentation result, especially with precise cellular bound-

ries, will greatly benefit the following prediction outcomes. How-
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ver, nuclei segmentation is still a crucial task. First of all, the

on-uniform operations during the collection of whole slide im-

ges may lead to image inconsistency. For example, manual hema-

oxylin and eosin staining or different slide scanners may cause

olor inconsistency and unclear nucleus boundaries. Second, since

he growth rate of malignant cells is extremely high, the density of

he malignant cells in the neoplastic tissue is usually much higher

han that in the normal tissue. Squeezing among tumor and nor-

al cells will bring a large among of occluded and overlapping nu-

lei. 

Traditional image segmentation techniques ( Otsu, 1979; Vin-

ent and Soille, 1991; Cheng et al., 2008 ) leverage low-level image

eatures or a simple thresholding strategy to segment the nuclei.

owever, it is hard to select a suitable threshold for all patholog-

cal images. And these methods may also fail to predict a satis-

actory segmentation result when the aforementioned difficulties

ppear. In recent years, convolutional neural network (CNN) ap-

roaches ( He et al., 2017; Long et al., 2015 ) have achieved promis-

ng results in natural image segmentation tasks. However, the dif-

https://doi.org/10.1016/j.media.2020.101786
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
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Fig. 1. Comparison of the Grayscale image (b) and the Hematoxylin component (c) 

extracted from H&E staining WSI patch (a). The contrast in (c) between nuclei and 

cytoplasm is much higher than (b), and is more robust even the color is inconsis- 

tent. 
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ference of the characteristics between natural images and medi-

cal images makes it hard to directly apply these methods to nu-

clei segmentation. U-net and its variants ( Ronneberger et al., 2015;

Zhou et al., 2018 ) have been proven their effectiveness in medical

image segmentation. But these methods are still facing some chal-

lenges. The major problem is the lack of dataset with pixel-level la-

bels. Because manually constructing pathological datasets requires

high expertise and is labor-intensive. Moreover, a simple U-net ar-

chitecture is not good enough to predict precise nucleus bound-

aries. With the recently proposed nuclei segmentation dataset

( Kumar et al., 2017 ), more CNN models have been proposed and

achieved outstanding performance. Some methods ( Graham et al.,

2019; Naylor et al., 2018 ) rely on distance maps to separate the

touching or overlapping nuclei. Koohbanani et al. (2019) take spa-

tial information into account and propose a proposal-free model.

Zhou et al. (2019b) proposed a contour-aware CNN model, called

CIA-Net, for predicting more precise nucleus boundaries. However,

the segmentation performance still has room for improvement. 

In this paper, we perform nuclei segmentation in a new per-

spective and propose a Hematoxylin-aware network. Our proposed

method leverages the optical characteristics of H&E staining that

hematoxylin always stains cell nuclei blue, and eosin always stains

the extracellular matrix and cytoplasm pink, as shown in Fig. 1 (a).

According to Beer-Lambert’s Law ( Parson, 2007 ), we apply a color

decomposition method ( Ruifrok et al., 2001 ) to extract Hema-

toxylin (H) component from RGB color space, to obtain a much

clearer nucleus view. It can be observed that the contrast between

the nuclei and the cytoplasm & stroma in Fig. 1 (c) is much higher

than Fig. 1 (b), even the color of two WSI patches are inconsis-

tent. To make full use of the H component, we propose a Triple

U-net architecture for nuclei segmentation. Our network consists

of three U-net branches, an RGB branch, a hematoxylin (H) branch

and a segmentation branch. The RGB branch serves for providing

the raw feature representation of the original image. The H branch

is introduced for more precise contour-aware supervision. The seg-

mentation branch aggregates the feature from two other branches

at every single convolution block and finally prediction segmenta-

tion results. Instead of directly concatenating all the features from

different branches with different tasks, we propose a progressive

dense feature aggregation module (PDFA). It allows the network to

progressively merge and learn the features from different image

domains. Extensive experiments are performed to qualitatively and
uantitatively evaluate the effectiveness of our proposed method,

t outperforms state-of-the-art methods on three different nuclei

egmentation datasets. 

The main contributions of this paper are three-fold: 

• We tailor a Hematoxylin-aware network with Triple U-net

architecture for nuclei segmentation without the necessity

of color normalization and achieve state-of-the-art nuclei

segmentation performance. 
• Hematoxylin component is extracted to provide a more pre-

cise contour awareness for the network supervision in order

to predict segmentation results with more precise nucleus

boundaries. 
• The PDFA module is proposed to allow the network to ag-

gregate features from different domains progressively. 

. Related works 

.1. CNN-based natural image segmentation 

With the increasing computational power and the data explo-

ion, convolutional neural networks have already dominated the

eld of natural image segmentation. 

Fully convolutional network ( Long et al., 2015 ) was proposed

or semantic segmentation which allows the network to take in-

ut of arbitrary size images. Zhao et al. (2017) proposed a PSP-

et which exploits the global context information by the pro-

osed pyramid pooling module. DeepLab series ( Chen et al., 2017a;

hen et al., 2017b; Chen et al., 2018 ) were proposed and achieved

romising semantic segmentation results. Different from semantic

egmentation, instance segmentation performs segmentation tasks

t the instance level. He et al. (2017) proposed a well-known

odel Mask-RCNN which extends the region proposal based ob-

ect detection task to instance segmentation. Liu et al. (2018) pro-

osed an adaptive feature pooling method to propagate the fea-

ures from the encoding phase to the proposal subnetworks.

e Geus et al. (2018) merged the predictions of semantic and in-

tance segmentation tasks using heuristics to achieve more effec-

ive panoptic segmentation. Yang et al. (2019) proposed a single-

hot, bottom-up image parser to process the semantic and instance

egmentation tasks jointly. 

However, we cannot directly apply these approaches to medi-

al image segmentation due to the domain discrepancy. Neverthe-

ess, it is still worth to know these outstanding segmentation tech-

iques. 

.2. CNN-based medical image segmentation 

Medical image segmentation can be functionally separated ac-

ording to the way that images are generated from, like CT ( Christ

t al., 2016; Roth et al., 2015 ), MRI ( Havaei et al., 2017; Pereira

t al., 2016 ), ultrasound ( Milletari et al., 2017 ), whole slide im-

ge ( Bejnordi et al., 2017 ) and etc. For section images like WSI, it

an be further categorized into cell-level ( Naik et al., 2008; Kumar

t al., 2017 ) and tissue-level ( Chen et al., 2016; Xu et al., 2016 ).

he bottleneck of the learning-based medical image segmentation

s the lack of training data. U-net ( Ronneberger et al., 2015 ) has

lready shown great effectiveness on medical image segmentation

ith very few training images and thus many U-net hybrids were

roposed upon it. Zhou et al. (2018) replaced the simple skip con-

ections with dense skip connections to obtain more complete

ulti-level information. Li et al. (2018) proposed a hybrid densely

onnected U-net for CT volume segmentation. Man et al., 2019 as-

ociated reinforcement learning with geometry-aware U-net to ac-

ivate the searching strategy for CT pancreas segmentation. 
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Fig. 2. Network Architecture. Our proposed network contains three branches. The RGB branch (upper) and the H branch (lower) are with the same structure with three 

downsamplings and aim to extract raw features and contour features respectively. The segmentation branch (middle) merges the features from two other branches and 

predicts the segmentation results. The block in orange is our proposed progressive dense feature aggregation module. Note that, all the skip connections in three branches 

are omitted for simplification. 
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Besides U-net architecture, many superior segmentation meth-

ds have also been proposed. Havaei et al. (2017) proposed mul-

iple network architectures to fuse image features under differ-

nt receptive fields to achieve high-quality segmentation of tu-

ors in MR images. Chen et al. (2016) proposed an FCN-based

odel for gland segmentation by simultaneously predicting con-

ours and instance probability maps to separate the touching

lands. Zhang et al. (2017) published a dataset for gland instance

egmentation and proposed a GAN-based segmentation network.

han et al. (2019) proposed to use a class activation map for

eakly supervised tissue segmentation. 

.3. Nuclei segmentation 

Nuclei segmentation is a fundamental step for computer as-

istance diagnosis and tumor micro-environment analysis. Early

pproaches ( Otsu, 1979 ) segment nuclei from histopathological

mages base on color thresholding and background subtraction.

ut it is hard to select a suitable threshold for all the sce-

arios. Marker controlled watershed segmentation ( Vincent and

oille, 1991 ) based on initial seed points to growing region directly

hich often leads to the false positive segmentation. These tra-

itional techniques usually have complex post-processing and are

ard to process images where the challenging scenarios happen,

uch as overlapping and occlusion. 

Recently, deep learning models have been widely used in nu-

lei segmentation. Kumar et al. (2017) introduced a challenging

ataset for nuclei segmentation and enrich the data for the com-

unity. Naylor et al. (2018) formulated the segmentation prob-
em as a regression task of distance maps to overcome the diffi-

ulty of touching nuclei. HoVer-Net ( Graham et al., 2019 ) was pro-

osed to perform nuclei segmentation and classification simultane-

usly. Chidester et al. (2019) proposed some enhancement strate-

ies base on U-net structure including residual blocks and data

ugmentation. A novel stain-aware loss function ( Graham and Ra-

poot, 2018 ) is tailor-made for the stain variations in H&E im-

ges. Liu et al. (2019) designed a dual-branch panoptic model that

ncorporates instance segmentation with semantic segmentation.

oohbanani et al. (2019) leveraged spatial information and pro-

ose a proposal-free model. CIA-Net ( Zhou et al., 2019b ) utilized

dditional contour supervision to obtain segmentation results with

ore precise nucleus boundaries. However, the existing nuclei seg-

entation approaches still have room for improvement. In this pa-

er, we take the representative color characteristic of an H&E stain

mage into consideration and propose a Hematoxylin-aware nuclei

egmentation. 

. Proposed method 

The network architecture of our proposed Triple U-net is illus-

rated in Fig. 2 . Our network contains three U-net branches that

erve different purposes. The RGB branch serves for extracting the

aw features of the segmentation task. The H branch focuses on

he Hematoxylin-aware feature extraction of the nucleus edge de-

ection task. Since the hematoxylin component has strong robust-

ess to the color inconsistency, we do not apply any color normal-

zation to the original image to avoid any information loss during

he normalization process. The segmentation branch fuses the RGB
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Fig. 3. Densely connected block ( Huang et al., 2017 ) (a) and our proposed progressive dense feature aggregation module (b). PDFA not only inherits the benefits from densely 

connected block, but also provides a softer feature aggregation strategy when new features from different domains come. 
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raw features and the Hematoxylin-aware contour features and then

predict the final segmentation results. Note that, all the skip con-

nection of three U-net branches in Fig. 2 are omitted for the sim-

plification of the figure. 

Next, we will introduce the Hematoxylin component extraction

in Section 3.1 . A novel Progressive Dense Feature Aggregation Mod-

ule (PDFA) is proposed in Section 3.2 . The loss functions of our

network are demonstrated in Section 3.3 . Section 3.4 shows the

implementation and training details. 

3.1. Hematoxylin component extraction 

Hematoxylin and eosin (H&E) stains have been used for at least

a century for cancer diagnosis because it can essentially differenti-

ate cytoplasmic, nuclei, and extracellular matrix features. Accord-

ing to the principle of H&E stain, hematoxylin stains cell nuclei

blue, and eosin stains the extracellular matrix and cytoplasm pink.

In this paper, we aim to use the above unique characteristic of H&E

stain as Hematoxylin-aware guidance for the segmentation net-

work. To achieve this, we apply a color decomposition technique

( Ruifrok et al., 2001 ) to decompose the Hematoxylin Component

from the original RGB image. This approach is commonly utilized

as a color normalization preprocessing in traditional methods due

to its robustness of color inconsistency in the H&E stained WSI. 

We assume that the gray level in each RGB channel is linear

with light transmission rate T = I/I 0 , where I 0 is the incident light

and I is the transmitted light. So each specific stain will be charac-

terized by a specific absorption factor c for the light in each of the

three RGB channels. Then we can model the relationship between

the among of stain and its absorption using Beer-Lambert’s Law

( Parson, 2007 ). The energy I of each RGB channel can be written

as follows: 

I = I 0 exp (−Ac) (1)

where I 0 is the intensity of the light entering the specimen, I is

the intensity of the light passed through the specimen. A is the

amount of stain and c is the absorption factor. 

Due to the non-linearity of the relative intensity in each of

the channels, the intensity values I of the image cannot be di-

rectly used for the stain color decomposition. Thus, we calculate

the specimen optical density o , which is linear with the concentra-

tion of absorbing stain, as follows: 

o = − log 
I 

I 0 
(2)

Hence Eq. (1) , we have got: 

o = Ac (3)

So each specific stain can be characterized by a specific optical

density vector. Here, the hematoxylin resulted in o values [0.18,
.20, 0.08] for R, G and B channels respectively. With this color

epresentation model, we are able to map RGB color space to

ny stain specific color space. Based on this model, we extracted

he Hematoxylin component by applying the color deconvolution

ethod proposed by Ruifrok et al. (2001) . 

.2. Progressive dense feature aggregation module 

In our proposed Triple U-net, the RGB branch and the H branch

erve for feature extraction in the segmentation task and nuclei

ontour detection task respectively. The RGB branch takes the orig-

nal image as input and extracts raw image features. The H branch

s designed as a Hematoxylin-aware supervision branch. And addi-

ional segmentation branch is introduced to fuse the raw features

nd the Hematoxylin-aware contour features together, from the en-

oding phase to the decoding phase, to predict the final segmenta-

ion results. 

To fuse and learn a better feature representation from different

ranches with different goals, we propose a softer feature fusion

trategy with densely connections, called Progressive Dense Fea-

ure Aggregation (PDFA). The intention of PDFA is simple and in-

uitive. When the new features from different image domains or

asks come, we want the network to fuse the previous features

ith the latter ones progressively, instead of directly concatenat-

ng all the features together. 

Fig. 3 (b) demonstrates our proposed PDFA module. Compared

ith the normal densely connected block ( Huang et al., 2017 ) in

ig. 3 (a), our proposed PDFA module not only inherits the advan-

ages of densely connected block, e.g., strengthen feature propaga-

ion, encourage feature reuse, and substantially reduce the number

f parameters, but also provides a more reasonable feature fusion

trategy. Note that, the number of layers in one PDFA module is

etermined by the number of new features to be fused. During

he decoding phase in our network, the PDFA modules contain four

ayers as shown in Fig. 3 (b). But in the encoding phase, since there

re no skipping features at the beginning of the network, the PDFA

odule only contains three layers. 

Ablation studies in Section 4.4 have been conducted to evalu-

te the effectiveness of our proposed PDFA compared with normal

ensely connected block. In addition, we also discuss how the or-

er of feature aggregation affects the network in ablation studies. 

.3. Loss function 

The total objective function is the weighted summation of the

osses from three branches: 

 total = λ1 L RGB + λ2 L H + λ3 L seg _ ST + λ4 L seg _ SD (4)
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here λi is the hyper-parameter of the corresponding loss. The de-

ails of each loss is described as follows. 

.3.1. RGB branch 

Since the original image in RGB color space contains the raw in-

ormation, which can provide the richest semantic information for

he segmentation task. Therefore, the direct output of this branch

s supervised by the segmentation ground truth using binary cross

ntropy loss, to obtain the most precise pixel-level features when

erforming segmentation. Hence, the loss L RGB is defined as fol-

ows: 

 RGB = − 1 

N 

N ∑ 

i =1 

(y i · log x i + (1 − y i ) · log (1 − x i )) (5)

here x i denotes the predicted probability of the i th pixel, y i is the

orresponding ground truth. N is the number of pixels. 

.3.2. H branch 

The input Hematoxylin component in the H branch directly re-

ects the concentration of hematoxylin in the H&E stained whole

lide image, highlights the contour of the nucleus, and is robust to

olor inconsistency. Therefore, we leverage the contour information

rom Hematoxylin component and assign the nuclei contour de-

ection task in the H branch to guide the model to better learn the

ontour information of the nucleus. Hence the network can predict

egmentation results with more precise nucleus boundaries. Here,

e utilize Soft Dice Loss for this branch so that the model can fo-

us on learning the information of the nuclear contour. The loss

unction is as follows: 

 H = 1 − 2 

∑ N 
i =1 x i y i ∑ N 

i =1 x 
2 
i 

+ 

∑ N 
i =1 y 

2 
i 

(6) 

here x i is the predicted probability of the i th pixel and y i is the

round truth. 

.3.3. Segmentation branch 

Due to the stain color inconsistency and the blurred nucleus

oundaries, mislabelled nuclei and inaccurate boundaries are in-

vitable during manual annotations for pixel-level nuclei segmen-

ation. As a result, these inaccurate labels may dominate the gra-

ients and hence prevent the network from learning informa-

ive samples. Therefore, in the segmentation branch, we apply a

mooth Truncated Loss proposed by Zhou et al. (2019b) to sup-

ress the interference from the outliers. The loss is defined as fol-

ows: 

 seg _ ST = 

{
−log(γ ) + 

1 
2 
(1 − x 2 

i 

γ 2 ) , x i < γ

−log(x i ) , x i ≥ γ
(7) 

here x i denotes the predicted probability of the i th pixel, x i = x if

 i = 1 , and x i = 1 − x otherwise. γ = 0 . 3 is the truncated point. 

Besides, we also introduce a Soft Dice Loss for the segmentation

ranch as follows: 

 seg _ SD = 1 − 2 

∑ N 
i =1 x i y i ∑ N 

i =1 x 
2 
i 

+ 

∑ N 
i =1 y 

2 
i 

(8) 

.4. Implementation and training details 

We implement our network using Pytorch 1.2.0 on a worksta-

ion equipped with an NVIDIA GeForce RTX 2080 Ti. During train-

ng, we use several data augmentations including, elastic transfor-

ation, random cropping, mirror, rotation and flipping. We crop

ach original image (10 0 0 × 10 0 0 pixels) into 16 patches (256

256 pixels) and then feed them into the network. We use

damW optimizer with the batch size of 2. The learning rate is
nitialized as 10 −4 with a learning rate decay of 0.96. The weight

ecay is set as 10 −4 . The hyper-parameters of losses λi were set as

0.3, 0.3, 1, 0.3}. We did not use transfer learning and independent

ranch training during the training process. 

. Experiments 

We have conducted extensive experiments to quantitatively

nd qualitatively evaluate the effectiveness of our proposed Triple

-net on nuclei segmentation. Section 4.1 introduces the de-

ails of the dataset and evaluation metrics. Section 4.2 and

ection 4.3 show the quantitative comparisons with the existing

ethods. We have also conducted ablation studies in Section 4.4 to

valuate the effectiveness of the Triple U-net structure, the superi-

rity of the proposed Progressive Dense Feature Aggregation mod-

le and the impact of different losses. Section 4.5 demonstrates the

ualitative results. We show the limitation of our model and have

ome discussions in Section 4.6 . 

.1. Dataset and evaluation metrics 

We evaluate our model on three nuclei segmentation

ataset, (1) Multi-Organ Nuclei Segmentation (MoNuSeg) dataset

 Kumar et al., 2017 ), (2) Colorectal Nuclear Segmentation and

henotypes (CoNSeP) dataset ( Graham et al., 2019 ) and (3) CPM-17

 Vu et al., 2019 ). 

MoNuSeg contains 7 organs, 30 images under the resolution of

0 0 0 × 10 0 0 with the annotations of more than 21,0 0 0 nuclear

oundaries. We divide all images into a training set and a test set.

he training set contains 16 image pieces from 4 organs, and the

est set contains 14 image pieces from 7 organs. We use the same

mage split with the existing methods ( Zhou et al., 2019b; Graham

t al., 2019; Kumar et al., 2017 ). 

CoNSeP involves 41 H&E stained images, each of which is

0 0 0 × 10 0 0 pixels, scanned at 40X magnification. The images

ere extracted from 16 WSIs from different colorectal adenocarci-

oma (CRA) patients but involved different tissues and cell types.

e conduct the training and the test set using the same image

plit with ( Graham et al., 2019 ), where the training set contains 27

mages, the test set contains 14 images. 

CPM-17 contains 40 pathological images with pixel-level anno-

ations, of which 32 were in the training set and 8 were in the test

et. Each image is 500 × 500 pixels, scanned at 40X magnification.

his dataset contains more than one tumor type, including non-

mall cell lung cancer (NSCLC), head and neck squamous cell car-

inoma (HNSCC), glioblastoma multiforme (GBM), and lower grade

lioma (LGG) tumors. 

In the experiments, we use three common metrics to evalu-

te the nuclei segmentation results of each model, including Ag-

regated Jaccard Index (AJI) ( Kumar et al., 2017 ), Dice score and

anoptic Quality (PQ) ( Kirillov et al., 2020 ). 

AJI is defined as follows: 

JI = 

∑ n 
i =1 G i 

⋂ 

P j ∑ n 
i =1 G i 

⋃ 

P j + 

∑ 

k ∈ N P k 
(9) 

here j = argmax k 
G i 

⋂ 

P k 
G i 

⋃ 

P k 
, G = { G 1 , G 2 , . . . , G n } and P =

 P 1 , P 2 , . . . , P m 

} denote the ground truth and the prediction re-

ults respectively. N is the set of indices of prediction results

ithout any corresponding ground truth. 

DICE score is defined as follows: 

ICE = 

2 × | G 

⋂ 

P | 
| G | + | P | (10) 

 and G denote the prediction results and the ground truth respec-

ively. 
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Table 1 

Quantitative comparison with existing methods. 

Method MoNuSeg CoNSeP CPM-17 

AJI DICE PQ AJI DICE PQ AJI DICE PQ 

(1) CNN3 ( Kumar et al., 2017 ) 0.508 0.762 - - - - - - - 

(2) Mask R-CNN ( He et al., 2017 ) 0.546 0.760 0.509 0.474 0.740 0.460 0.684 0.850 0.674 

(3) DIST ( Naylor et al., 2018 ) 0.560 0.786 0.443 0.502 0.804 0.398 0.616 0.826 0.504 

(4) DCAN ( Chen et al., 2016 ) 0.525 0.793 0.492 0.289 0.733 0.256 0.561 0.828 0.545 

(5) Deep Panoptic ( Liu et al., 2019 ) 0.585 0.794 - - - - - - - 

(6) HoVer-Net ( Graham et al., 2019 ) 0.618 0.826 0.597 0.571 0.853 0.547 0.705 0.869 0.697 

(7) CIA-Net ( Zhou et al., 2019b ) 0.620 0.818 0.577 - - - - - - 

Ours 0.621 0.837 0.601 0.579 0.843 0.562 0.711 0.888 0.685 

Table 2 

Cross validation. 

Experiment MoNuSeg CoNSeP CPM-17 

AJI DICE PQ AJI DICE PQ AJI DICE PQ 

HoVer- 

Net 

(1) fold1 0.595 0.822 0.541 0.578 0.815 0.518 0.610 0.825 0.589 

(2) fold2 0.591 0.803 0.525 0.569 0.850 0.545 0.642 0.862 0.641 

(3) fold3 0.583 0.822 0.524 0.535 0.824 0.536 0.623 0.866 0.621 

(4) fold4 0.544 0.786 0.509 0.583 0.839 0.570 0.585 0.841 0.579 

(5) fold5 0.539 0.810 0.520 0.566 0.830 0.537 0.599 0.868 0.611 

Mean ± SD 0.570 ± 0.024 0.809 ± 0.013 0.524 ± 0.010 0.566 ± 0.017 0.832 ± 0.012 0.541 ± 0.017 0.612 ± 0.020 0.852 ± 0.017 0.608 ± 0.022 

Ours (1) fold1 0.615 0.829 0.577 0.593 0.813 0.524 0.661 0.851 0.625 

(2) fold2 0.617 0.815 0.556 0.563 0.848 0.550 0.688 0.872 0.656 

(3) fold3 0.587 0.817 0.549 0.547 0.829 0.530 0.647 0.849 0.629 

(4) fold4 0.547 0.799 0.512 0.581 0.841 0.573 0.652 0.852 0.626 

(5) fold5 0.553 0.825 0.525 0.569 0.828 0.547 0.641 0.875 0.617 

Mean ± SD 0.584 ± 0.030 0.817 ± 0.010 0.544 ± 0.023 0.571 ± 0.016 0.832 ± 0.012 0.545 ± 0.017 0.658 ± 0.017 0.860 ± 0.011 0.631 ± 0.013 
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Since the AJI score may over-penalize the overlapping region. To

avoid this problem, Panoptic Quality (PQ) ( Graham et al., 2019 ) is

introduced to evaluate the performance of nuclei segmentation in

instance-level, which is defined as follows: 

P Q = 

| T P | 
| T P | + 

1 
2 
| F P | + 

1 
2 
| F N| ×

∑ 

(x,y ) ∈ T P IoU(x, y ) 

| T P | (11)

x and y denote the ground truth and the prediction segment, re-

spectively, in instance-level. IoU denotes the intersection over the

union. When the IoU > 0.5 of each ( x, y ) pair, the result can be

regarded to be unique ( Kirillov et al., 2020 ). TP, FP , and FN de-

note matched pairs of prediction, unmatched prediction, and un-

matched ground truth prediction respectively. 

4.2. Quantitative comparisons with existing methods 

We compare our model with several semantic segmentation

baseline models and existing nuclei segmentation models, includ-

ing: (1) CNN3 ( Kumar et al., 2017 ), (2) Mask R-CNN ( He et al.,

2017 ), (3) DIST ( Naylor et al., 2018 ), (4) DCAN ( Chen et al., 2016 ),

(5) Deep Panoptic ( Liu et al., 2019 ), (6) HoVer-Net ( Graham et al.,

2019 ) and (7) CIA-Net ( Zhou et al., 2019b ). Since CNN has demon-

strated its superiority on segmentation task, we only compare our

proposed network with existing CNN-based models. Note that, the

results of Mask R-CNN is implemented by the author of HoVer-Net

( Graham et al., 2019 ). And the DICE score of (7) is calculated by

the released model from the author of CIA-Net ( Zhou et al., 2019b ).

The quantitative results of other models are directly from their re-

spective papers. 

Table 1 demonstrates the quantitative results. CNN3 (1) is the

baseline model of nuclei segmentation. Mask R-CNN (2) performs

better than (1) in the AJI score thanks to the region proposal strat-

egy. DIST model (3) leverages distance maps for nuclei segmenta-

tion and achieves promising results. However, their results are still

much lower than other methods because neither distance maps

nor region proposal can guarantee precise nuclei boundaries. The
ontour-aware model in DCAN (4) allows it to predict more ac-

urate boundaries. However, the low network capacity of simple

CN backbone leads to non-satisfactory AJI scores. Deep Panop-

ic (5) introduces an additional semantic branch with an instance

ranch for both global and local feature consideration. It can pre-

ict more precise nucleus locations to avoid the penalty of false

ositive in AJI measurement and thus achieves a higher AJI score

han (1) to (3). Since the morphology of the nucleus is an impor-

ant feature for clinical researches. HoVer-Net (6) proposed to use

orizontal and vertical distance maps simultaneously and formu-

ate the segmentation task and the classification task in the same

etwork. CIA-Net (7) introduces contour supervision to obtain the

egmentation results with more precise nucleus boundaries and

roposes a smooth truncated loss to suppress non-overlapping re-

ions with ground truth. The overall segmentation performances of

ur approach in three different metrics and datasets are superior

ompared with the state-of-the-art models (6) and (7). Our pro-

osed Hematoxylin-aware network not only achieves state-of-the-

rt segmentation performance but also avoids any color normaliza-

ion pre-processing step. 

.3. Cross validation 

We also conduct a 5-fold cross validation to statistically eval-

ate the stability of our proposed network compared with the

tate-of-the-art algorithm. Since our quantitative results shown in

able 1 are apparently higher than other methods. In this experi-

ent, we only compare with HoVer-Net ( Graham et al., 2019 ). Note

hat, we trained HoVer-Net using their released code and com-

letely followed the training strategy shown in the paper. Statisti-

al results are shown in Table 2 . We compare our proposed model

ith HoVer-Net in three different datasets, MoNuSeg, CoNSeP and

PM-17. The upper part of the table demonstrates the results from

oVer-Net, and the lower part shows ours. Our model demon-

trates its superiority of nuclei segmentation in all datasets under

ll metrics compared with the state-of-the-art model. 
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Table 3 

Effectiveness of Hematoxylin-aware model. H, R, G and B indicate the 

Hematoxylin component, R channel, G channel and B channel respec- 

tively. 

Method AJI DICE PQ 

(1) SingleU with RGB 0.552 0.805 0.481 

(2) SingleU with Grayscale 0.538 0.791 0.463 

(3) SingleU with H 0.547 0.798 0.477 

(4) SingleU with RGBH 0.561 0.808 0.493 

(5) Multi-task with RGBH 0.574 0.812 0.536 

(6) TripleU with RGB & R 0.582 0.829 0.557 

(7) TripleU with RGB & G 0.584 0.834 0.555 

(8) TripleU with RGB & B 0.583 0.818 0.559 

(9) TripleU with RGB & RGBH 0.595 0.815 0.563 

(10 † ) TripleU with RGB & Grayscale 0.584 0.828 0.566 

(10) TripleU with RGB & Grayscale 0.581 0.825 0.569 

(11 † ) TripleU with RGB & RGB 0.614 0.836 0.586 

(11) TripleU with RGB & RGB 0.612 0.836 0.587 

(12 † ) TripleU with RGB & H 0.608 0.834 0.574 

(12) TripleU with RGB & H ( Ours ) 0.621 0.837 0.601 
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Table 4 

Effectiveness of PDFA. 

Method AJI DICE PQ 

(1) Ours with conv block 0.581 0.781 0.536 

(2) Ours with dense block 0.590 0.795 0.555 

(3) Ours with PDFA (H-Skip-RGB) 0.625 0.836 0.584 

(4) Ours with PDFA (H-RGB-Skip) 0.624 0.831 0.586 

(5) Ours with PDFA (RGB-Skip-H) 0.625 0.834 0.587 

(6) Ours with PDFA (RGB-H-Skip) 0.626 0.832 0.585 

(7) Ours with PDFA (Skip-H-RGB) 0.627 0.833 0.585 

(8) Ours with PDFA (Skip-RGB-H) 0.628 0.838 0.588 
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.4. Ablation studies 

We conduct ablation studies to evaluate the effectiveness of the

ematoxylin-aware model, the superiority of the proposed pro-

ressive dense feature aggregation module and the impact of dif-

erent loss configurations. 

.4.1. Effectiveness of hematoxylin-aware model 

In this experiment, we aim to evaluate the effectiveness of

ur proposed network in three aspects, Triple U-net structure,

ematoxylin-aware model and color normalization. So we com-

are our complete model with different network structures with

ifferent input configurations. The network settings are shown in

able 3 are illustrated as follows: (1)–(4) A single U-net structure

ith the input RGB, Grayscale, Hematoxylin component, RGBH im-

ges, respectively. (5) A multi-task framework with two tasks, con-

our detection task and nuclei segmentation task. (6)-(11) Triple

-net structures and replacing the input image of H branch with R

hannel, G channel, B channel, RGBH, grayscale image and RGB im-

ge respectively. (12) Our complete model. (10 † )-(12 † ) The models

ith ( † ) adopted a color normalization method ( Vahadane et al.,

016 ) to the input RGB image in RGB branch. Note that, all the

-net structures in this experiment down- and up- samples only

hree times. The loss configurations in all Triple U-net variants are

he same as our final model. And the loss configurations in the

ingle U-nets are the same with the segmentation branch with

moothed truncated loss and soft dice loss. 

Table 3 shows the statistical results. As can be seen, the mod-

ls (1) to (4) with only one single U-net are overall poorer than

he ones (6) to (12) with Triple U-net structure due to the lim-

ted network capability and the lack of contour supervision. Among

odels (1) to (4), (2) with the input grayscale image performs

orst because of color information loss. It is interesting that even

he Hematoxylin component also loses color information, (3) still

hows comparable results with (1) since the light absorbing model

as already decomposed the Hematoxylin stained colors. It also ev-

dences that the extracted Hematoxylin component is robust for

&E stained nuclei segmentation task. Model (4) with RGBH in-

ut image demonstrates the best results among four single U-net

tructure baselines. It proves that the hematoxylin component can

rovide additional guidance for segmentation. We also compare

ur model with a multi-task learning baseline (5) with two tasks,

 contour detection task and a segmentation task. Although it out-

erforms single U-net models (1) to (4) thanks to the multi-task

raining. It still lacks a feature aggregation strategy comparing with

odels (6) to (12). (6) to (12) in Table 3 shows the results with
riple U-net with the contour supervision using R channel, G chan-

el, B channel, RGBH, RGB, grayscale and Hematoxylin component

espectively. As can be seen, with an additional stand alone con-

our supervision branch, the performance boosted compared with

1) to (4) models with only one U-net. However, the segmentation

esults of these models are still worse than (12). Because the H

ranch is originally designed for detecting the contours of the nu-

lei according to the color specialty of H&E staining. When replac-

ng the Hematoxylin component with other images without such

olor specialty, the performance of the H branch decreases. 

Thanks to the Hematoxylin-aware model, color normalization is

o longer necessary in our network. To prove such strength, we

lso compare the models with ( † ) and without color normaliza-

ion. We can observe that the models with color normalization

10 † ) and (11 † ) show slightly better performance than the models

10) and (11) without it. It is because the input images for the H

ranch do not contain the staining color specialty in the Hema-

oxylin component. And that is the reason why additional color

ormalization may help. In contrast, when we feed the Hema-

oxylin component into the H branch in the model (12 † ), color nor-

alization for the RGB image becomes a burden. Because Hema-

oxylin component itself has already been independent of the color

hanges. Further color normalization for the RGB image may lead

o information losses which may unexpectedly harm the segmen-

ation performance. Our final model without color normalization

12) demonstrates the best performance and proves the robustness

f color changes. 

.4.2. Effectiveness of progressive dense feature aggregation 

In the second ablation study, we evaluate the performance of

ur proposed PDFA module. We compare our complete model with

he following two variants: (1) We replace the PDFA module with

he normal convolutional block. (2) We replace the PDFA mod-

le with the Densely Connected block ( Huang et al., 2017 ). In the

eanwhile, it is also worth discussing how the feature coming and

erging orders affect the performance of the network. So we also

ry all the combinations of the orders of three different features

n the decoding phase, including the features from skip connec-

ions, the RGB branch and the H branch, indexing from (3) to (8)

n Table 4 . 

To avoid the subjective selection of the final model, we con-

uct this experiment with a completely random image split for

he training and the test sets, which are isolated from the datasets

ave been used in other experiments. It can be seen from Table 4 ,

ur model with the dense block (2) achieves better results than

he convolutional block (1) indisputably. Our proposed PDFA mod-

le proves its superiority compared with the normal dense block

2), no matter in which feature aggregation orders (3) to (8). Re-

ults evidence that aggregating features, especially those features

rom different domains or branches, in a progressive manner al-

ow the network to learn features better. Models from (3) to (8)

re constructed to discuss how the feature aggregation orders af-

ect the network performance. As can be seen, even three measure-

ent scores vibrate in different orders, the statistical results are in
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Fig. 4. Qualitative results of ablation studies. We show the difference maps between each result and the ground truth image for clearer visualization. Blue areas in the 

difference maps indicate the intersection of the result and the ground truth. Red and green areas indicate the false positive and the false negative segmentation respectively. 

Yellow boxes highlight the difference of all results. H indicates the Hematoxylin component. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Table 5 

Different loss configurations. 

Method AJI DICE PQ 

(1) Smooth Truncated (ST) Loss only 0.621 0.832 0.577 

(2) Soft Dice Loss only 0.618 0.836 0.570 

(3) ST & SD (Ours) 0.628 0.838 0.588 

(4) HoVer-Net with ST Loss 0.592 0.815 0.547 
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a relatively high standard which proves that the feature aggrega-

tion order actually does not affect the network performance much.

We choose the model with the best performance in the following

order (Skip-RGB-H) and all our final results shown in this paper

are generated using this feature aggregation order. 

Fig. 4 also shows the qualitative comparison of two ablation

studies by visualizing the difference maps between each result and

the ground truth. Here we selectively demonstrate the results from

the representative models for better layout and visualization. As

we can see from the difference maps, our complete model gives

the most accurate results than other variants compared with the

ground truth. Besides, our results are with the most accurate nu-

cleus boundaries and with less false positive and false negative

segmentation. 

4.4.3. Different loss configurations 

In this experiment, we aim to discuss the impact of different

losses. Since the goals of the RGB branch and the H branch are

clear and the losses in these two branches are simple, we only

discuss the loss configurations in the segmentation branch. (1)

Smooth truncated loss only. (2) Soft dice loss only. (3) Smooth

truncated loss and soft dice loss (ours). (4) HoVer-Net with smooth

truncated loss. 

The results shown in Table 5 are quite intuitive. Since the

smooth truncated loss is originally designed to suppress outliers,

which is the non-overlapping regions with ground truth. (1) and

(3) with smooth truncated loss shows better AJI and PQ perfor-

mance than (2). The soft dice loss is introduced for pixel-wise seg-

mentation precision. (2) and (3) with soft dice loss shows a better

DICE score than (1). Our final model (3) with both losses achieves

the best performance among these three models. We have also ap-

plied smooth truncated loss in HoVer-Net (4). The performance of

HoVer-Net with ST loss drastically decreased. It is because HoVer-
et is designed as a multi-task network and all the tasks share

he same encoder. Adding too more constraints to one specific task

ay cause imbalance of network training and make the network

veremphasis this specific task. But this problem will not happen

n our proposed network because ST loss was introduced in the

ain segmentation branch. 

.5. Instance segmentation results 

Fig. 5 shows the instance segmentation results. We can observe

hat the nuclei are well segmented, and the segmentation results

re similar to the ground truth in Fig. 5 (b) according to the dif-

erence maps in Fig. 5 (d). Although there are still some false pos-

tive and false negative segmentation on the nucleus boundaries,

he overall shapes of our predicted results are still highly consis-

ent with the ground truth and even more accurate than some of

he manual labels. 

.6. Discussions 

During the experiments, we found some imperfect ground truth

abels. One is the inaccurate nucleus boundaries, which are high-

ighted in yellow boxes in Fig. 6 (b). Another is some miss-labeled

uclei in blue boxes. However, these imperfections are inevitable

ecause pathologists will face many difficulties when manual la-

eling. Huge resolution WSI images make it hard to label all the

uclei. The ambiguous tumor nuclei with blurred boundaries and

ow color contrast lead to inaccurate manual labels, especially on

he nucleus boundaries. Fortunately, these imperfections can be

he noises of data which can somehow avoid model overfitting. In

ome cases, our proposed model can detect mislabeled nuclei and

how more accurate boundaries. It can be a complement of manual

nnotations. Fig. 6 (c) shows our results of Fig. 6 (a). We can observe

hat our proposed model segmented some miss-labeled nuclei and

redicted more accurate boundaries than the ground truth in the

ellow and blue boxes. However, our proposed model has an ap-

arent drawback that we cannot well separate the attached nuclei,

hich is also a common limitation of existing approaches. 

To measure the experts’ agreement of the segmentation results,

e also invited five experienced pathologists for an inter-rater

valuation. We randomly selected 20 images from each dataset, a

otal of 60 images were selected. Each group contains two images,
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Fig. 5. The result of instance segmentation. (a) is the input image. (b) is the ground truth. (c) is the result of our model. (d) shows the difference maps between the 

ground truth and our results. Blue areas indicate the intersection of our result and the ground truth. Red and green areas indicate the false positive and the false negative 

segmentation respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Examples of inaccurate labels in the MoNuSeg dataset ( Kumar et al., 2017 ). 

The overlooked nucleus labels in ground truth (b) are marked in blue boxes. The 

inaccurate nucleus boundaries in ground truth (b) are marked in yellow boxes. The 

correctness of the observation of these inaccurate labels is confirmed by the expe- 

rienced pathologists. Our results in (c) are with more accurate boundaries than the 

ground truth in some cases. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 7. HoVer-Net vs. GT, Ours vs. GT and HoVer-Net vs. Ours in the randomly se- 

lected 120 nuclei segmentation pairs per rater. 

Fig. 8. Confusion matrix of inter-rater reliability. Each block indicates one-verse- 

one similarity calculated by Cohen’s Kappa coefficient. 
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oVer-Net vs. GT, Ours vs. GT and HoVer-Net vs. Ours. For each

egmentation pair, pathologists were asked to choose a better seg-

entation result in two aspects, the completeness of segmentation

n instance-level and the precision of nuclei boundaries. So each

ater has to make 120 choices for each comparison. Fig. 7 demon-

trates the overall voting scores of five raters for all the compar-

sons. And Fig 8 (a)–(c) shows the inter-rater reliability of HoVer-

et vs. GT, Ours vs. GT and HoVer-Net vs. Ours, measured by Co-

en’s Kappa scores. 

. Conclusion 

In this paper, we present a Hematoxylin-aware Triple U-net for

uclei segmentation from WSI images, which is a new paradigm

nd perspective to effectively leverage the unique characteristic

f H&E staining for network supervision. Modeling the WSI as a

ight absorbing phenomenon and extracting the Hematoxylin com-

onent by Beer-Lambert’s law, our proposed model is much more

obust to color inconsistency, hence the color normalization is no

onger necessary. In addition, we propose a more reasonable fea-

ure aggregation module, called Progressive Dense Feature Aggre-

ation, which allows the network to progressively merge and learn

eatures from different domains or different tasks. Extensive ex-

eriments and ablation studies on three datasets demonstrated

he superiority of our proposed network. Quantitative experiments

how that our proposed method has achieved state-of-the-art nu-

lei segmentation performance. 
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