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ABSTRACT Ambient occlusion (abbr. AO) plays an important role in realistic rendering applications
because AO produces more realistic ambient lighting, which is achieved by calculating the brightness of
certain screen parts based on objects’ geometry. However, the baseline computation of AO algorithm is
time-consuming, which limits its application for real-time rendering. Currently, most AO algorithms are
based on screen space to reduce the computational consumption, which leads to unrealistic results due to
the usage of artificial features. To overcome these challenges, in this paper, we first create a well-crafted
dataset with the pair of deferred shading buffer data and ground-truth AO shaded images. Then, we design
an efficient deep neural network for the screen space AO image generation, based on which we further
design a Compute Shader Library to compute the shaded AO images. Our extensive experimental results
show that our method achieves competent performance than existing screen space ambient or volumetric
ambient based AO methods both in visual quality and efficiency.

INDEX TERMS Ambient Occlusion, Rendering, Shading, Deep Neural Network

I. INTRODUCTION

AMBIENT Occlusion (abbr. AO) plays a vital role in
the lighting of a scene, because it determines the per-

centages of light being ‘blocked’ by the environment. The
original AO is a complex ray tracing process that requires
high computation cost, which normally works as a pre-
process in applications [1], [2]. To reduce the computation
cost, there are two approximation methods: the screen space
ambient occlusion (abbr. SSAO) [3]–[7], and the volumetric
ambient occlusion (abbr. VAO) [8]–[10]. SSAO-based meth-
ods utilize the screen space information, including depth and
normal, stored in G buffer to compute the occlusions that are
independent from the complexity of scene. These methods
are extensively used in real-time applications because of the
simple implementation and high efficiency. Different with
SSAO, VAO-based methods transform the sampling domain

to a smaller tangent sphere and formulate the AO problem
as a volumetric integration. However, these existing methods
often produce incorrect results due to the artificial features.

In recent years, many methods based on neural network
have been proposed in the domain [11], [12]. The major
features of these methods are based on a dataset, and then
train neural network to learn a mapping from the input data
surrounding the pixel to the AO of that pixel. However, due
to the deficiency in network structures, these methods are
difficult to fully learn full information in samples, i.e., the
generalization of their trained models are not satisfactory.
With the development of the graphic hardware, although
the ray-traced AO methods may run in real-time with the
advanced graphic cards, they are also limited due to the high
cost for regular application scenarios [13].

In this paper, we propose an efficient SSAO method,
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FIGURE 1. Example scenes rendered with our DeepAO model enabled (bottom row) and disabled (top row). All results are rendered within Unity game engine.

named DeepAO, to generate accurate AO map via deep
neural network. We first create a dataset that contains cam-
era space depth, normal and ground truth AO that can be
computed via a ray-trace-based render. Then, we design a
light U-Net [14]-like fully convolution neural network to
learning the mapping between the input G-buffer information
and the ground truth AO shaded images on this dataset. By
comparing with the existing machine learning based meth-
ods, our proposed method achieves a better accuracy and
more efficient in run-time. Fig. 1 shows four example scenes
generated by using DeepAO. Based on our method, we have
also developed a Compute Shading Library, which is simple,
fast and efficient implementation of neural network in game
engine. This library can be easily applied to other rendering
tasks.

Instead of defeating the Ray-traced AO method on high
performance computers, our motivation in this work is to
generate high quality AO results efficiently on mid-and-low
performance devices. In summarize, our main contribution
are as follows:

• We have proposed an improved structure to generate
comparable results with that of using off-line Ray-traced
method efficiently.The source codes and our Shading
Library have been released at [15].

• We have presented a more complex dataset, which can
better support the generalization of the training based
methods.

II. RELATED WORK
AO is a perennial topic in computer graphics, and a range
of approaches have been proposed on this task. Early meth-
ods use ray-tracing algorithm to generate still images [1],

FIGURE 2. Two sampling methods of the SSAO-based models: Sampling in a
view spheric space (left) and sampling in a hemispheric space (right).

[2], [16]. Subsequently these methods are used as a pre-
processing step in real-time interactive applications though
limited to static scene. To support the dynamic scenes, Kon-
tkanen et al. [17] applied the ambient occlusion fields to
handle animated scenes [18]. Bunnnell [19] presents a GPU-
based method for deformation surface. In [20], Chistensen
extends this method for rendering color bleeding. All these
mentioned methods are based on ray tracing or various sur-
face discretization.

Dating from 2007, the feasible methods to compute ambi-
ent occlusion in real-time along with other affect in virtual
world named screen-space ambient occlusion (abbr. SSAO)
methods are developed [3]–[7]. These methods sample from
depth buffer in a view sphere space and count the number of
occluded points to estimate the occlusion factor (Fig. 2 (a)).
To address the self-occlude flaw, the SSAO+ [21] method
changes spherical space to hemispheric space, as illustrated
in Fig. 2 (b). This greatly improves the performance and
make SSAO-based methods to work within dynamic environ-
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ments in conjunction with animation and physics. Moreover,
SSAO-based methods do not require pre-calculated occlusion
data but relieves both the artists and the memory budget.
Base on SSAO, some extended methods have been proposed.
In [22], Bavoi et al. introduce Horizon Based Ambient Oc-
clusion (abbr. HBAO). This method computes the occlusion
by estimating the openness of the horizon about the sample
point. Then the rays are marched along the depth buffer, and
the horizon estimation are calculated by the difference in
depth. However, this method only takes into account of the
visible points in the current tracing perspective, and does not
integrate the global influence. As shown in Fig. 3, the points
that are invisible in current view also make a contribution
for the ambient occlusion. Moreover, due to the sampling
mechanism of HBAO, it is difficult to deal with points that are
relatively far away in the sampling space. These drawbacks
will lead to incorrect shadows or the absence of shadows.

FIGURE 3. An example of the invisible geometric information from the
perspective of Z-buffer. The points in dot are also make contribution for AO. In
this case, the HBAO method does not take these points into consideration.

Different with SSAO, another technique called Volumetric
Ambient Occlusion(abbr. VAO) is proposed [10], [23]. This
methods measures the portion of the tangent sphere of the
surface belonging to the set of occluded points and replaces
the ray trace by containment tests. The integrated new for-
mula has low variation that allows to be estimated accurately
with a few samples. However, due to the differences of the
pure AO and VAO, the VAO methods can only produce overly
smooth results which lack of details of the scene.

Besides of SSAO and VAO, Penmatsa et al. propose the
VXAO method in [24]. Instead of relying on screen space
data, this method gathers information from a world space
in voxel representation of the scene, which covers a large
area around the viewer. In this representation, objects that
are relatively far from the surface still have contributions for
the occlusion. However, in order to reduce the computational
cost, this method requires to use the lower resolution of the
voxels that leads to a low resolution shading result and cannot
guarantee the rendering quality, which limits its applications.
Moreover, the computation cost remains more expensive than
the HBAO method even though it samples the space in a low
resolution.

With the success applications of deep learning, many re-
searchers have studied deep learning based methods to treat
the rendering problems. In [25], Yang et al. use a Deep
Convolution Networks to perform a quick reconstruction for
Monte Carlo Rendering. To address the AO problem, Holden
et al. [11] first introduce a neural network, named NNAO,
to learn the features from dataset and predict an optimal
approximation of the ambient occlusion affect. The network
of NNAO is a multi-layer-perception with only 4 layers,
for which the network has poor feature learning ability and
cannot generate high quality AO results. Afterwards, Nalbach
et al. [12] introduce a convolution neural network named
Deep Shading to learn a mapping from position in camera
space and normal to AO shaded image. However, the Deep
Shading method have poor performance on generalization
due to the low variety of objects of the training dataset.

Recently, real-time AO methods have been developed with
special graphic hardware support, such as NVIDIA RTX
2080ti [13]. Although the RTX graphic card can achieve
1080P in real-time, the fps may vary in 30-60, depending on
the complexity of the scene. However, with a device does
not have an NVIDIA RTX Graphic card, such as the mobile
device, the method cannot generate high quality AO in real-
time. In contrast, SSAO-based method can efficiently run
on the devices with OpenGL 3.1 (or later version) support,
which allows broad usage in common applications.

III. PROPOSED METHOD
A. DATASET GENERATION
There exists two public datasets of AO: the NNAO [11]
and the Deep Shading [12] datasets. However, the NNAO
dataset only contains about 600 annotated records that lacks
the variety of objects, which limits the generalization of the
trained model. For the Deep Shading dataset, the geometry
details of the scenes are relatively coarse, which cannot
facilitate to guarantee the quality of the AO results.

FIGURE 4. Exampled scenes in our dataset. The first row shows the normal
maps, the second row are the corresponding depth maps. The corresponding
ground truth AO shaded images are shown in the bottom.
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FIGURE 5. The workflow of our DeepAO model, which consists of four modules: the deep learning module, the storage module, the CPU computation module and
the GPU rendering module.

To overcome the above limitations, we build our own
dataset with both deferred shading buffers and ground truth
AO shaded images. To create the dataset, 17 scenes with more
than 200 classifies of objects are utilized to generate the pair
annotated data. Each of the scene contains a wide variety
of objects with high resolution of geometry details, such as
car, ship, aircraft, building, status, etc. Among these scenes,
15 are used to generate the training data and 2 are used for
generating the validate data.

In total, our dataset contains 42, 000 pairs of deferred
shading buffers with their ground truth AO shaded images
in a resolution of 512 × 512 px. The ground truth AO
shaded images are generated by the professional rendering
engine (V-Ray [26]) using the ray tracing algorithm offline.
To generate the 42, 000 AO shaded images, we create 6 − 8
virtual cameras for each scene and set the field of view to
50 degrees for all cameras. Then, we rotate each camera
with 90, 180, and 270 degrees perpendicular to the angle of
view, and bind them to the pre-designed paths and make them
shooting along the paths. It took more than five days for us to
render all scene data with the ray-traced V-Ray engine on two
PCs with high performance GPU devices offline. The size of
the generated dataset is more than 500 G. We will release
our collected scenes and the codes including the shading
library for generating the dataset publicly upon this work
is accepted. We believe researchers will benefit to explore
further studies on AO.

It worth to point out that the deferred shading buffers
which include the depth map and the normal map are gener-
ated based on camera space. Fig. 4 shows four annotated pairs
in our dataset. There are two reasons: 1) the normal and depth
map of camera space can be retrieved directly from the G-
buffer when delayed rendering is enabled, 2) we cannot find
the additional benefits of using normal vector and position in
world coordinates.

In this work, we use 33, 800 annotated pairs to train our
proposed deep network model on our dataset, and use 7, 200
pairs to validate the trained model. Besides, we also test
the generalization of our trained model using the common
household scenes and famous public scenes such as Sponza
Palace in our experiment (see Fig. 7), which are not included
in training dataset.

B. WORKFLOW OF DEEP AO
Holden et al. [11] and Nalbach et al. [12] both designed a
pixel shader that integrated all the implementations. In their
frameworks, a user is required to modify the implementation
of the shader if there are updates of the AO algorithms. In or-
der to improve the workflow to more flexible and independent
of the neural network, we propose to divide the workflow into
several independent modules.

As illustrated in Fig. 5, our workflow mainly consists of
four independent modules: the deep learning module, the
storage module, the CPU computing module, and the GPU
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FIGURE 6. The network structure of the proposed AO generation model. The input is the depth map and camera space normal map at the resolution of W × H.
The resolution of the output is the the same as the input.

rendering module. With the powerful parallel computation
capability of GPU device, we design six parameterized com-
pute shaders with the operations of convolution, batch norm,
activation, pooling, up-sample, and concatenate in our task.
We package these shaders in a library, shown in Fig. 5(b).
This library includes encode-decode models and reflection
operations. With this Compute Shader Library, the pre-saved
model can be automatically decoded and re-generated by
conducting a different deep learning framework without up-
dating any code, even if the network structure is modified.
Therefore, users only need to focus on the design of deep
learning frameworks in this workflow. To reduce the run-
time of our algorithm, we also provide further encapsulated
shader that combines all the operations into few shaders.
This structure reduces the number of drawcalls and greatly
improves the rendering efficiency. Similar to the other screen-
space ambient occlusion methods, the input of our method
includes the normal vector and the depth which can be easily
obtained in G-buffer when delay rendering is enabled.

C. NETWORK

Our method utilizes the network structure of U-Net which is
commonly applied for the medical image segmentation [14],
[27]. As illustrated in Fig. 6, the proposed networks includes
the down-sampling branch on the left and the up-sampling
branch on the right. The down-sampling branch is a network

which consists of four 3 × 3 convolution kernel with stride
1 and Leaky-ReLU active layers, and four 2 × 2 average-
pooling structure with stride 2. Each step of the up-sampling
branch consists of a bi-linear upper sampling layer, a con-
volution (reducing the number of channels by half) layer,
batch normalization, and leaky-ReLU activation layer. The
last layer uses a 1×1 convolution kernel to map four channels
to a single channel. It worth to mention that although the
resolution of the shaded images in our dataset is 512 × 512,
our proposed network is based on the full convolutional
network, which can output the same size as the input at any
arbitrary resolution.
Loss Function. In the training step of the network, we take
structure similarity (abbr. SSIM) index as the loss function
with a window size of 11. The output of the last layer is xi ∈
[0, 1], and yi ∈ [0, 1] is the real sample tag. Then, we define
the loss function as follows:

SSIM(x, y) =
(2uxuy + c1)(2σxy + c2)

(u2x + u2y + c1)(σ2
x + σ2

y + c2)
(1)

where ux and uy are the mean of the patch; σx, σy and σxy
are the variances. c1 > 0 and c2 > 0 are constants which
are used to avoid errors of dividing by zero. We set c1 =
1e− 4, c2 = 9e− 4 in our implementation.
Training Parameters. In the training step, the Adaptive
Moment Estimation [28] is used in our network, and the
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learning rate is 0.0001. In our implementation, the batch size
is set to 16, and the leaky-ReLU negative slope is set to 0.01.

IV. EXPERIMENTS
The implementation platform of our experiment is PyCharm
with PyTorch port. All the experiments in this paper are
conducted on a PC with an Intel(R) Core(TM) i7-9700 CPU
at 3.6G and a NVIDIA GeForce GTX 1080ti graphic card.
The memory is 16G, and the OS is 64-bit Windows 10 with
professional version. All the test are measured with Unity
Profiler.
Quantitative Evaluation: To evaluate the performance of
our method, we tested our trained model on three datasets:
the NNAO dataset [11], the deep shading dataset [12], and
our new dataset. The statistical results of our verification
are given in Table 1. We also compare our method with
three state-of-the-art SSAO-based methods: the HBAO [6],
the NNAO [11], and the Deep Shading method [12]. The
average values for the structure similarity (abbr. SSIM) index
and the root-mean-square error (abbr. RMSE) are reported.
We also test the average run-time on each dataset. The best
performance is marked in bold in the table. As can be seen,
our method outperforms all other three compared methods on
these three datasets.

TABLE 1. Comparisons of our model with three SSAO-based methods. The
average RMSE, average SSIM and average run-time of the methods are
computed on the datasets: NNAO [11], Deep Shading [12] and our new
dataset.

DATASETS NNAO DEEP SHADING OURs Run-time(ms)
SSIM RMSE SSIM RMSE SSIM RMSE

HBAO 0.867 0.072 0.737 0.063 0.821 0.058 6.19
NNAO 0.45 0.156 0.354 0.133 0.36 0.117 3.41

Deep Shading 0.873 0.151 0.711 0.082 0.875 0.077 12.5
DeepAO 0.908 0.059 0.745 0.061 0.899 0.046 3.13

We have also conducted a set of visual comparisons, see
Fig. 7. The original NNAO method adopted the bilateral
filtering to post-process the output, because its original re-
sults contain lots of noise. Thus, in our experiment, only
the NNAO output is processed with the bilateral filtering
operations for a fair comparison. As can be seen, our method
shows significantly better results than other three methods:
although the HBAO method yields good results in smaller
structure, it generates poor results in larger structure, espe-
cially when there are partial occlusions. The results generated
by the NNAO method have poor shadows in many regions. It
worth to point out that the number of the sampling points
in original NNAO in [11] is 8, and the AO results of the
NNAO method highly depends on the sampling points. That
is, with more sampling points input that along with more
computation time, NNAO shows better AO results. For a fair
comparison, we set the input sample number up to 64 in
all comparisons. As shown in Table 1, our method achieves
better performance both in visual quality and run-time. This
is because the network of NNAO is a simple multi-layer

perception with only 4 neural layers which strongly limits
its learning ability.

Furthermore, comparing to the deep shading method [12]
, our method also shows better performance it both in visual
effectiveness and run-time. We analyze the reasons as fol-
lows:

• The deep shading method requires to input the camera
coordinates (Px, Py, Pz) to compute the transformation
from depth to the camera coordinates. On the contrary,
our method directly reads the depth value from the Z-
buffer, for which the computation becomes more effi-
cient.

• The convolution kernels of down sampling step in the
network of deep shading method are 8, 16, 32, 64, and
128, respectively. Using the conventional convolution
will be up to 40 ms for one input. To accelerate the
computation, the deep shading method adopts the group
convolution operations. In our experiments, we found
that the conventional convolution can generate better
results. To balance the effectiveness and the efficiency,
we use the convolution kernels with 4, 8, 16, 32 in the
down sampling step, respectively.

• The ground truth AO shaded images in deep shading
dataset contain many noise, and the loss function of
SSIM is sensitive to these noise. For this reason, the
learning ability of deep shading method is strongly
limit. Moreover, the variety of the scenes for generating
the deep shading dataset is simple and the scenes do not
contain high resolution mesh models, which further lim-
its the generalization of deep shading method for other
complex scenes. In obvious contrast to the deep shading
dataset, the collected scenes of our new datasets contain
a large amount of different objects in high resolutions.
This variety greatly improves the generalization of our
method. It worth to point out that we re-trained the
deep shading network on our new dataset and re-trained
our proposed network on deep shading dataset for fair
comparisons.

Comparison with VAO-based method: VAO is another
technique for generating AO [10], [23]. In our experiments,
we compare our method with the latest VAO-based method:
VAO++ [10]. Fig. 8 shows two examples of comparison
results. The VAO++ results are generated by the addin in
Unity [29]. As can be seen, the visual quality of our results
is much better than the VAO++ method. Additionally, the
numeric measurements of SSIM and RMSE also outperforms
the VAO++ method.

V. CONCLUSION
In this paper, we propose an efficient screen space ambient
occlusion generation method via deep network. We first
construct our dataset with pairs of deferred shading buffers
and ground truth shaded AO images. Then, we design a
U-Net-like network to train on the dataset to generate the
ambient occlusions. We evaluate our method by comparing
with the existing traditional and deep-learning based methods
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FIGURE 7. Comparisons with the existing SSAO-based methods. From left to right: HBAO [6], NNAO [11], Deep shading [12], our model, and the ground truth.
Note that the example in the fourth row is from the Sponza Palace scene, which is not included in either the training or validation. that only the NNAO output is
conducted by the bilateral filtering operation to alleviate the noise.

on both two public datasets and our datasets. Experimental
results show that our method achieve better performance both

in visual quality and run-time than these methods on the
three datasets. Furthermore, we also improve the workflow
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FIGURE 8. Comparisons with the VAO++ method [10]. From left to right:
ground truth, our model, and the VAO++ method. Corresponding SSIM and
RMSE are shown on the top-right corner of each shaded AO result.

and design a Compute Shader Library which contains com-
mon convolution network operation, encode-decode model,
and reflection. This allows to automatically generate neural
network shader that can produce fast accurate results. Our
Compute Shader Library will be easy to for users to add
into the existing rendering pipeline as a post-process step
according to the configuration file stored in the frozen model.
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