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Abstract
Binocular tone mapping is studied in the previous works to generate a fusible pair of LDR images in order to convey more
visual content than one single LDR image. However, the existing methods are all based onmonocular tone mapping operators.
It greatly restricts the preservation of local details and global contrast in a binocular LDR pair. In this paper, we proposed
the first binocular tone mapping operator to more effectively distribute visual content to an LDR pair, leveraging the great
representability and interpretability of deep convolutional neural network. Based on the existing binocular perception models,
novel loss functions are also proposed to optimize the output pairs in terms of local details, global contrast, content distribution,
and binocular fusibility. Ourmethod is validatedwith a qualitative and quantitative evaluation, as well as a user study. Statistics
show that our method outperforms the state-of-the-art binocular tone mapping frameworks in terms of both visual quality and
time performance.

Keywords Tone mapping · Binocular tone mapping · Binocular perception · Convolutional neural network

1 Introduction

High-dynamic-range (HDR) images can be acquired with
daily used digital cameras or smartphones. The color depth
precision can be as high as 14 or even 16 bits. By merg-
ing multiple images at different exposures, even higher color
depth precision can be achieved [6]. HDR images are often
transformed to low dynamic range (LDR) to satisfy the
demands ofmonitors and projectors.However, because of the
limited color depth precision of LDR images, local details
and global contrast cannot be well preserved simultaneously
[42]. Local details are the high-frequency components of the
local texture, while global contrast is the ratio between the
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brightness of the brightest and the darkest areas in the image.
To well preserve local details, global contrast becomes low
making it difficult to understand the brightness difference in
the real scene (Fig. 1a). In contrast, to well preserve global
contrast, bright areas are saturated at the cost of losing the
local details (Fig. 1b). To improve the perception of local
details and global contrast, besides developing monitor with
higher color depth precision, another effective way is to uti-
lize stereoscopic devices which are widely used for movies,
computer games, and augmented reality (AR).

Stereoscopic devices, which consist of two display chan-
nels, can help to increase the perceived color depth precision.
This is because human visual system can preserve different
visual contents separately perceived by two eyes and form a
single vision. To utilize the binocular perception, binocular
tone mapping is first proposed by Yang et al. [51] to gen-
erate two different LDR images. Given an HDR image and
any tone-mapped LDR image, this method generates another
LDR image that has the largest visual difference with the
given one, while preserving the binocular fusibility for the
LDR image pair. However, large visual difference between
the image pair is not equivalent to more visual content. To
resolve this issue, recently, Zhang et al. [54] proposed binoc-
ular perception metrics to measure the total visual content
of a binocular LDR pair. Moreover, the two LDR images of
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998 Z. Zhang et al.

Fig. 1 aTone-mappedLDRpreserving local details but with low global
contrast. b Tone-mapped LDR preserving global contrast but losing
local details in the bright areas. a and b cannot form a feasible binocu-
lar pair since they are not binocularly fusible. cBinocular pair generated
withZhang at al’smethod [54]. It is fusible andwith highglobal contrast,

but cannot preserve all the details in the bright areas. d Our generated
binocular pair well preserving both local details and global contrast.
The sparse details in the bright areas of the right image not only helps
binocular fusibility but also improve visual quality

a pair can be simultaneously optimized and generated with
their method.

However, both Yang et al.’s and Zhang et al.’s methods
generate LDR images relying on monocular tone mapping
operators, and it leads to two major problems: First, it is not
effective to optimize a binocular pair by tuning the parame-
ters of existing monocular operators. It is because monocular
operators are originally designed for the trade-off between
local details and global contrast in one single image without
considering how to distribute the visual content into a binoc-
ular pair. Moreover, the capacity of the two channels cannot
be fully made use of, since the solution space is not only
restricted by the model of the adopted monocular operator
but also constrained by binocular fusibility. A stably fusible
pair cannot be obtainedwith a simple combination of a image
with good local detail preservation (Fig. 1a) and one with
good global contrast preservation (Fig. 1b). Because local
details in the bright areas are very different from each other

in two views. On the other hand, the pair generated by Zhang
et al.’s method is binocularly fusible because local details are
not too different in two views (Fig. 1c). But the local details
in the bright areas are not well preserved. Second, both of the
existing methods are computationally expensive because of
the iterative optimization. They optimize the output pair by
iteratively updating the parameters of the adopted monocu-
lar operators. Tone mapping, visual content evaluation, and
fusibility evaluation should be conducted in each iteration.

To resolve the above issue, we propose a binocular tone
mapping operator that directly optimizes the visual content
distribution to an image pair, instead of optimizing two sets of
parameters to generate two monocular tone-mapped images.
However, it is still difficult to handcraft an efficient and
effective visual content distribution model. So we propose to
utilize the representability and interpretability of deep con-
volutional neural network (CNN), to learn the distribution
model from a large number of images of different contents.
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A series of loss functions are proposed to optimize the visual
contents of the generated pairs without introducing visual
discomfort. Our proposed method has two advantages over
the two existing methods: First, our generated LDR pair is
of better visual quality since local details and global contrast
are more effectively distributed to the pair. Compared with
Zhang et al.’s result (Fig. 1c), our generated pair (Fig. 1d)
better preserves local details while achieving similar global
contrast. As shown in Fig. 1d, in the extremely bright areas
of the right image, there are sparse details. Although this
kind of local details seldom appears in monocularly tone-
mapped images, they not only help binocular fusibility but
also improve visual quality of binocular perception. Second,
our proposed CNN-based tone mapping operator is end-to-
end and with fast computational speed.

However, training theCNN-based binocular tonemapping
operator is challenging. The network that simply regresses
on existing results (Fig. 1c, with limited visual content) or the
infusible pairs (combination of Fig. 1a, b, with more visual
content) cannot generate desirable pairs with good visual
quality while maintaining binocular fusibility. So we pro-
pose to optimize the binocularly perceived visual content
of the output LDR pairs. But how to directly compare the
visual content of an LDR pair with that of an HDR image is
still an open problem. Instead, our use two reference images
(Fig. 1a, b) to respectively represent the target local detail
(Fig. 1a) and the target global contrast (Fig. 1b), and learn
visual content from them utilizing binocular perceptionmod-
els. Besides binocular visual content evaluation, two more
loss functions are also proposed to ensure the effective dis-
tribution of visual content and the binocular fusibility of the
output pair. To demonstrate the performance of our method,
a qualitative and quantitative evaluation, as well as a user
study, were conducted on HDR images of different genres
and content. Statistics show that our method outperforms the
existing binocular tonemapping frameworks in terms of both
visual quality and time performance. Our contributions are
summarized as follows:

– We propose the first binocular tone mapping operator to
effectively distribute visual content to anLDR imagepair,
leveraging the great representability and interpretability
of deep convolutional neural network.

– Novel loss functions are proposed to optimize imagepairs
in terms of local details, global contrast, visual content
distribution, and binocular fusibility.

– Our method can deliver more visual content than the
state-of-the-art binocular tone mapping methods while
maintaining visual comfort.

– Compared to the existing methods, our method can
achieve faster computational speed and is easier to adopt
GPU acceleration.

2 Related works

2.1 Monocular tonemapping operators

Many tone mapping operators (TMO) have been proposed
to transform the HDR images to LDR images for better
compatibility to LDR display devices. According to the com-
prehensive surveys done by Reinhard et al. [37] and Banterle
et al. [2], existing TMOs can be categorized into global and
local operators.

Global operators transform HDR to LDR in a spatially
invariant manner by applying the same compressive curve
over the whole image [7,38,44,48]. In particular, Tumblin et
al. [44] proposed to generate LDR images whose displayed
brightness is as close to real-world sensation as possible.
Ward [48] developed global mapping functions based on the
results in psychophysics on brightness and contrast percep-
tion. Inspired by photographic practices, Reinhard et al. [38]
proposed a photographic tone reproduction technique. To
imitate the human response to light, Drago et al. [7] pro-
posed to logarithmically compress the luminance values.

Different from global operators, local operators transform
HDR to LDR in a spatially variant manner [1,8,13,34]. These
methods usually decompose the HDR image into layers,
adjust the layers independently, and re-combine them into
an LDR image. In particular, Durand et al. [8] leverages the
bilateral filter to decompose an image into a base layer and a
detail layer and adjusts the global contrast by manipulating
the base layer. Farbman et al. [13] proposed to decompose
the HDR using a weighted least squares (WLS) framework
and manipulate both global contrast and local details in a
multi-scale manner. Paris et al. [34] and Aubry et al. [1]
effectively and efficiently performs layer decomposition and
tone manipulation leveraging Local Laplacian Filter.

The above monocular TMOs focus on adjusting the trade-
off between global contrast and local details in one single
image. In other words, monocular operators are not capa-
ble of effectively distributing visual content to a binocular
pair. So existing binocular tone mapping methods that rely
on monocular operators cannot fully utilize the potential of
binocular perception. In contrast, our proposed binocular
tone mapping operator learns visual content distribution on a
large dataset, and can effectively distribute local details and
global contrast to an LDR pair.

2.2 Binocular perception

Von Helmholtz and Southall [46] presented an interesting
fact that our visual system is able to fuse two different images
from our two eyes into a single vision, which is called binoc-
ular single vision. Many existing works study the binocular
perception of brightness, contour, color and local contrast
(detail). For binocular tone mapping, local details and global
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contrast are the most important kinds of visual content [54].
Local details perception can be estimated with local con-
trast perception models. Local contrast perception in one
monocular view generally inhibits the other [47]. In other
words, binocular local detail perception is actually domi-
nated by the view with more local details. Existing works
[26,29,30,32] provided different functions and parameters
to model the domination phenomenon. On the other hand,
global contrast perception can be regarded as the overall
understanding of brightness and estimated utilizing bright-
ness perceptionmodels. As suggested inmany psychological
studies [3,5,11,25,27], binocular brightness perception is
approximately a linear combination of the brightness in two
views, as long as the two views are not too different with
each other. The above two perception mechanisms make it
possible to convey more visual content within an image pair,
as long as local details and global contrast is effectively dis-
tributed among the image pair.

To utilize binocular single vision, there exist some works
that generate image pair or video pair. In particular, Yang et
al. [51] first proposed a binocular tone mapping framework.
To generate a pair of LDR images, it first generates and fixes
onemonocular LDR image and then optimizes the other such
that these two images keep large visual difference [4]. But
the major drawback is that large visual difference always
brings more visual content. To resolve this issue, Zhang et
al. [54] proposed binocular perceptionmetrics tomeasure the
total visual content of an image pair. Base on their proposed
metrics, the two images in a pair can be simultaneously opti-
mized in terms of local details, global contrast, and binocular
fusibility. Feng and Loew [14] extended Yang et al.’s [51]
work to video tone mapping, taking temporal coherency into
account. Besides, binocular luster effect (the salient shini-
ness in fused vision) was explored by Chua et al. [18] for
enhancing visual information.

However, although based on binocular perceptionmodels,
the existing binocular tone mapping methods [14,51,54] all
use monocular tone mapping operators to generate binocu-
lar image pairs. Since monocular operators are not designed
for distributing visual content to an image pair, the poten-
tial of binocular perception cannot be fully utilized. On the
contrary, our proposed CNN-based operator aims at effec-
tively distributing visual content to an image pair based on
the existing binocular perception models. To meet this tar-
get, we propose to learn the distribution model from images
of different contents, utilizing the representability and inter-
pretability of CNN.

2.3 Convolutional neural network

Convolutional neural networks (CNNs) have been shown
its superior performance in computer vision and graph-
ics. Many kinds of image reconstruction and generation

tasks can be effectively conducted with CNN by learning
the hierarchical image features. Iizuka et al. [19] proposed
an end-to-end network to predict color information from
grayscale images. Xie et al. [49] proposed a contour predic-
tionmodel that leverages fully convolutional neural networks
[28] and deeply-supervised nets. Gharbi et al. [15] approxi-
mated the desired image transformation by training a network
to predict the coefficients of a locally-affinemodel in bilateral
space. Ledig et al. [24] presented a generative adversar-
ial network [16] for image super-resolution. More works
such as image inpainting [36,50], HDR image reconstruc-
tion [9], image style transfer [21] and texture synthesis [41]
also proved the effectiveness of CNN in image reconstruc-
tion and generation applications. Endo et al. [10] proposed a
deep-learning-based approach to infer a set of LDR images
at different exposures from one single input LDR image.
Although multiple output images were simultaneously gen-
erated, they were independently optimized.

However, the exiting CNN methods only focused on gen-
erating one single image or multiple independent monocular
images. Different from them, our target is to generate an LDR
pair for binocular single vision. So the existing methods can-
not be directly applied to our application.Our target LDRpair
should preserve as many local details and global contrast as
possible while under the constraint of binocular fusibility. So
we propose to optimize the output pair based on the binoc-
ular perception models, such that the visual content can be
automatically and effectively distributed to two images.

3 Overview

As overviewed in Fig. 2, our proposed method takes an HDR
image IHDR (Fig. 2a) as input, and then generates a tone-
mapped LDR pair {L, R} (Fig. 2c). The output pair {L, R}
preserves the visual content of IHDR since local details and
global contrast are effectively distributed to the pair. L con-
tains more local details but with less global contrast, while R
has more global contrast but less local details. When {L, R}
is viewed with a stereoscopic display, audiences can perceive
the visual content of both images with binocular perception.

Our method consists of an end-to-end network (Fig. 2b)
trained with a series of loss functions (Fig. 2f) optimizing
{L, R}. {L, R} are not evaluated by referring to IHDR, since
how to directly compare the visual content of LDR images
with that of HDR images is still an open problem. Instead,
we generate two reference LDR images Id and Ic (Fig. 2d, e),
respectively, representing the target local details and global
contrast:

Id = T(IHDR, βd), (1)

Ic = T(IHDR, βc), (2)
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Fig. 2 System overview and network structures. Our proposed method
takes IHDR as input and generates an LDR pair {L, R} with an end-
to-end network. In the training phase, {L, R} is optimized with the
proposed loss functions. Two tone-mapped LDR images Id and Ic are
regarded as target local details and target global contrast. In the network

structures, ES in the residual blocks denotes element-wise addition.
Convolution filters in the Dilation-4 and dilation-2 blocks operate with
dilation of 4 and 2. The size of all convolution kernels is 3 × 3 except
for the 4× 4 kernel in the last convolutional layer of the global branch.
All the convolution layers generate feature maps with 64 channels

where T(IHDR, β) is the bilateral tone mapping operator [8]
with the parameter β controlling the contrast of the base
layer of the tone-mapped image. A high value of β means
global contrast. In our setting, Id is generated with βd = 4
preserving most of the local details. On the other hand, Ic is
generated with βc = 5.5 resulting in high global contrast at
the cost of losing the local details in the bright areas. Two loss
functions based on binocular perceptionmodels are proposed
to evaluate the local details and global contrast of {L, R} by
referring to Id and Ic. Also, we further design two more loss
terms to improve visual content distribution and binocularly
fusibility of {L, R}.

How to normalizeHDR images to dealwith different value
ranges is introduced in Sect. 4.1. Our proposed network con-
sists of a local branch and a global branch to process the local
details and global contrast of the output {L, R}. The network
structures are illustrated in Fig. 2b and detailed in Sect. 4.2.
The design of the loss functions and the training details are
elaborated in Sects. 4.3 and 4.4.

4 Approach

4.1 HDR normalization

Considering the various value range of HDR images, we first
transform the values to the normalized logarithmic domain
before tone mapping. Although the most straightforward
way is to apply logarithmic transform independently on
three color channels, unfortunately, it will cause color shift.
Instead, we conduct the transformation only on luminance

channel while maintaining the original color ratios. Inspired
by the existing works [8,40,45], the luminance value l and
the color ratio (r∗, g∗, b∗) for each pixel i are separated as:

l = 0.299r + 0.587g + 0.114b, (3)

(r∗, g∗, b∗) = (r , g, b)

max(r , g, b)
, (4)

where r , g and b are the red, green, blue values of a pixel i .
The luminance value l is transformed to normalized log-scale
luminance l ′ as:

l ′ = log(l) − lmin

lmax − lmin
, (5)

where lmax and lmin themaximal andminimal log-scale lumi-
nance values over the whole image. Thus, the range of l ′ is
[0,1]. Finally, the original color ratio (r∗, g∗, b∗) and the
normalized luminance l ′ are re-combined as:

(r ′, g′, b′) = l ′

0.299r∗ + 0.587g∗ + 0.114b∗ (r∗, g∗, b∗)

(6)

where (r ′, g′, b′) are the three input color channels to the
network.

4.2 Network structures

Amajor purpose of our proposedmethod is to distribute local
details and global contrast to the generated LDR pair. So we
adopt a two-branch network structure to capture the local and
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global information of the input HDR. Also, networks with
multiple branches are effective to extract multi-scale features
[43]. As shown in Fig. 2b, our network consists of a local
branch, and a global branch.

The local branch extracts and reconstructs the local details.
It consists of one convolutional layer and four residual blocks.
Similar structures have been adopted in various image pro-
cessing tasks, such as image super-resolution [23,39]. To
increase the receptive field without increasing the complex-
ity of the network, dilated convolutional layers [52] are
adopted in the first two residual blocks. The dilation sizes
are set to 4 and 2 respectively. Intuitively speaking, larger
dilation size means large receptive field. Comparing with
traditional strided convolution, dilated convolution can pre-
serve the original resolution for the extracted feature map, so
the extracted mid-level features are more precise and robust.

The global branch extracts and reconstructs global fea-
tures that helps optimizing global contrast. It consists of a
fixed number of strided convolution layers and requires a
fixed input resolution. So the input image is first resized to
the resolution of 64 × 64 to feed to the global branch. Then
an 1×1×64 feature vector is obtained after 4 convolutional
layers with striding size of 2 and a convolutional layer with a
4 × 4 kennel without padding. This feature vector is further
replicated to the image size as the output feature map of the
local branch.

The output feature maps of local and global branches are
then concatenated and processed with two convolutional lay-
ers followed by one tanh layer.With this two-branch network
design, our network is able to capture multi-scale features of
the input HDR images.

4.3 Loss functions

To optimize visual content distribution to the LDR pair gen-
erated by the network, we propose a series of loss functions.
A local details term Ld and a global contrast term Lc are
proposed based on binocular perception models, taking the
reference LDR images Id and Ic as targets, respectively opti-
mizing local details and global contrast of the pair {L, R}.
But as shown in Fig. 3a, training only with Ld and Lc can-
not guarantee effective distribution into the pair. Thus we
further propose a content distribution termLcd that provide
a guidance for distributing different visual content to L and
R (Fig. 3b). Furthermore, an extra binocular fusibility term
Lb f is proposed to improve the visual comfort of {L, R}
(Fig. 3c).

Local Detail Term Inspired by the existing work [53], we use
the local gradient to evaluate the local details of the image.
The gradient amplitudeG(I ) over an LDR image I is locally
calculated with the Scharr gradient operator [20]:

Gx (I ) = 1

16

⎡
⎣

3 0 −3
10 0 −10
3 0 −3

⎤
⎦ � I , (7)

Gy(I ) = 1

16

⎡
⎣

3 10 3
0 0 0

−3 −10 −3

⎤
⎦ � I , (8)

G(I ) =
√
G2

x (I ) + G2
y(I ), (9)

where � is convolution operation. G(I ) is calculated in a
monocular manner. Then utilizing the local gradient ampli-
tude G(L) and G(R), we further estimate the local detail
perception of the pair {L, R} in a binocular manner. Local
details in one monocular view generally inhibit details in the
other view [47]. In other words, binocular detail perception is
dominated by the view with more local details. It is approx-
imated with the existing detail perception model [26]:

Gb(L, R) = (G(L)s + G(R)t )s/t

z + G(L)s + G(R)t
, (10)

where s, t , and z are parameters of the model. In practice, we
set s = 3, t = 3 and z = 4.76, which is similar to the values
suggested by [31]. Then the estimated detail perception is
used to evaluate how the output {L, R} preserves the local
details of input HDR image IHDR. But how to compare the
visual content of LDR images with that of HDR image is
still an open problem. Instead, we generate a reference tone-
mapped LDR image Id to represent the target local details.
So the proposed local detail term evaluates {L, R} referring
to {Id , Id} with the detail perception model Gb(L, R) as:

Ld(L, R) = ||Gb(L, R) − Gb(Id , Id)||1, (11)

where || · ||1 represents l1 norm. The detail evaluation is
conducted in a binocular manner.

Global Contrast Term Global contrast is the overall percep-
tion of local brightness. Local brightness can be estimated
by averaging local image intensities [51,54]. We estimate
the local brightness by smoothing the image I :

μ(I ) = Mk � I (12)

whereMk is a Gaussian kernel of size k, and� is convolution
operation. We set k = 11 in practice. With μ(L) and μ(R),
we can then further estimate the local brightness perception
of pair {L, R} in a binocular manner. Many existing psy-
chological studies [3,5,11,25,27] suggest that the binocular
brightness of an image pair can be approximated as a linear
combination, as long as the two views are not too differ-
ent with each other. Since our target output pair is binocular
fusible, it fulfills the above assumption. So the global contrast
term based on binocular brightness perception is defined as:
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Fig. 3 LDR pairs generated by
networks trained with different
combinations of loss functions
(the local details term Ld , the
global contrast term Lc, and the
content distribution term Lcd ,
and the binocular fusibility term
Lb f ). a Only with Ld and Lc.
Visual content is not well
distributed to the two images.
Moreover, the two images
cannot form a binocular pair.
b With Ld , Lc, and Lcd , but
without Lb f . The two images
well preserve local details and
global contrast but are not
binocular fusible because the
details in the bright areas differ
too much from each other.
c With all the proposed loss
terms. The generated pair not
only well preserves local details
and global contrast but also is
binocular fusible

Lc(L, R) = ||1
2
μ(L) + 1

2
μ(R) − μ(Ic)||1, (13)

where || · ||1 represents l1 norm. Ic is the reference image
representing the target global contrast.

Content Distribution Term The local detail term and the
global contrast can evaluate the visual content. But train-
ing only with these two terms results in a feasible binocular
pair (Fig. 3a). So we propose a content distribution term
to improve the distribution ability of the network, such that
the two LDR images can differently but effectively preserve
visual contents. The target of this term is to preserve more
local details but less global contrast in L while more global
contrast but less local details in R. But designing a loss term
to guide the distribution is not a straightforward task. Fortu-
nately, inspired by the bilateral tone mapping operator [8],
we found that providing target global contrast is efficient to

guide the distribution.Moreover, the reference images Id and
Ic can be regarded as reasonable target levels of global con-
trast for L and R to respectively preserve visual content of
two different kinds. Similar to Eq. 13, we evaluate global
contrast based on local brightnessμ(·). So the content distri-
bution is defined as minimizing the local brightness between
the {L, R} and {Id , Ic}:

Lcd(L, R) = ||μ(L) − μ(Id)||1 + ||μ(R) − μ(Ic)||1, (14)

where || · ||1 represents l1 norm. The global contrast is sepa-
rately guided for the L and R in a monocular manner.

Binocular Fusibility Term. In our application, visual discom-
fort usually happens in the extremely bright areas where the
difference between L and R is large. As shown in Fig. 3b, R
preserves the brightness of these areas at the cost of losing
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local details. On the other hand, L preserve most of the local
details. As studied in [51], visual conflict of contour hap-
pens if and only if the details in one view are larger than the
obvious color difference (OCD) threshold, while that in the
other view is smaller than the just noticeable color difference
(JND) threshold. For a single pixel, the visual conflict con-
dition can be expressed as G(L) > OCD and G(R) < JND.
Region-based conflict condition is estimated by counting the
pixels with visual conflict. To avoid visual conflict, we can
conservatively encourage G(R) to be larger than JND

OCD G(L)

in every pixel. Thus, our fusibility term is defined as:

Lb f (L, R) = max(α f G(L) − G(R), 0) (15)

where α f is parameter for fusibility enhancement and should
be larger than JND

OCD . α f is set to 0.6 in practice.
Overall Loss Function.The overall loss function is defined as
the weighted sum of the local detail term, the global contrast
term, the content distribution termand the binocular fusibility
term:

L (L, R) = Ld + λ1Lc + λ2Lcd + λ3Lb f (16)

where λ1 = 0.2, λ2 = 0.1 and λ3 = 0.5. Figure 3 shows
results generated by networks trained with different combi-
nations of loss terms. The network trained with the complete
overall loss function can generate binocularly fusible image
pair with good visual quality (Fig. 3c).

4.4 Training details

Thanks to the HDR normalization and our network design,
ourmethod is robust to various value ranges and different res-
olutions of the input HDR images. To make our method able
to effectively distribute visual content to the output LDRpair,
the network should be trained on a large set of HDR images
of different genres and content. The HDR+ Burst Photogra-
phy Dataset [17], which contains 3620 HDR images, is used
as our training dataset.

During the training, all images in the training dataset are
resized to 320×320, and then randomly cropped to 256×256.
The network is trained on a PC equipped with two Nvidia
GTX 1080Ti GPU, using the Adam optimizer [22] with
β1=0.999 and β2=0.999. The batch size is 32, and the learn-
ing rate is set to 1e−5. The whole training process takes about
32 h for 800 epochs.

5 Results

To validate our method, we conducted a qualitative and a
quantitative evaluation, as well as a user study, on HDR
images of different genres and content. The Fairchild dataset

[12] and the HDR-Eye dataset [33] were used for the evalua-
tions. They respectively contain 105 and 46HDR images and
are independent of the training dataset (the HDR+Burst Pho-
tography Dataset [17] introduced in Sect. 4.4). The images
were resized to 960 × 640.

We compared our method with two state-of-the-art exist-
ing methods [51,54] which utilized monocular bilateral tone
mapping operator [8] and optimized the parameters of the
base layer contrast βL and βR . βL and βR can directly con-
trol the global contrast of left and right views. Yang et al.’s
method [51] first generates an image pair with a fixed βL .
Then βR is optimized such that the generated LDR image
pair was with the maximal visual difference between them
while satisfying fusibility. In our experiment, βL was set to
be 5, the suggested default value by [8]. On the other hand,
Zhang et al.’s method [54] simultaneously optimizes βL and
βR in terms of local details, global contrast, and binocu-
lar fusibility. In the following sections, results generated by
Yang et al.’s, Zhang et al.’s and our methods are respectively
denoted as {L∗

Yang, R
∗
Yang}, {L∗

Zhang, R
∗
Zhang}, and {L, R}.

Since all the outputs are binocular image pairs which
should be perceived via stereoscopic devices, we have put
the left and right image pairs of all the results shown in our
paper in supplementary materials. Readers are strongly rec-
ommended to view the image pairs via a stereoscopic display
for the best visual effect.

5.1 Qualitative evaluation

Figure 4 shows the comparison of our results against those
generated by Yang et al. [51] and Zhang et al. methods [54].
Both of the existing methods were based on the monocu-
lar operator and generated two monocular LDR images. As
shown in Fig. 4a, b, their results cannot simultaneously well
preserve local details and global contrast. This is because
the solution space is limited by the monocular operator and
constrained by binocular fusibility, and visual content can-
not be effectively distributed to two images. On the contrary,
as shown in Fig. 4c, our results well preserve both of local
details and global contrast. Compared with the results by
the existing methods, ours contains much more details in the
extremely bright areaswhilemaintaining the high global con-
trast, because visual content is effectively distributed to the
pair. Moreover, by keeping sparse details in R, our results are
visually more comfortable than those generated the existing
methods.

We further compare our results (Fig. 5b) with
Yang et al.’s (Fig. 5a). Yang et al.’s method first gener-
ates a left view with fixed parameters and then optimizes
the other view. It maximizes large visual difference between
two views while fulfilling the fusibility constrain. However,
a large visual difference, which Yang et al. encourage, is
not equivalent to more visual content. When optimizing the
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Fig. 4 a Yang et al.’s results; b
Zhang et al.’s results; c our
results. Our generated LDR
pairs can better preserve both
local details and global contrast

Fig. 5 a Yang et al.’s results; b our results. Our generated LDR pairs can better preserve local details in bright areas

unfixed view, large visual difference is usually achieved by
over-exposure in the bright areas. So their results achieve
large global contrast but cannot well preserve local details
in the bright areas. On the contrary, our results can well pre-
serve local details in the bright areas while achieving large
global contrast for the whole image.

Also, we compare our results (Fig. 6b) with Zhang et
al.’s (Fig. 6a). Both of their and our methods optimize the
output pair in terms of global contrast, local details, and
fusibility. Zhang et al’s results achieve a trade-off between
global contrast and local details. But they cannot simulta-
neously well preserve both kinds of visual content because
the adopted monocular tone mapping operator cannot well
distribute visual content to the pair. In the cases of the upper
two rows in Fig. 6b, high global contrast is achieved, but
local details in the bright areas are not well preserved. On

the other hand, in the cases of the lower two rows in Fig. 6b,
local details are well preserved but the global contrast is low.
On the contrary, it can be easily observed that our results in
Fig. 6a deliver more visual content by preserving more local
details while maintaining high global contrast. Sparse details
in R not only helps local detail preservation but also make
the pair visually more comfortable.

5.2 Quantitative evaluation

We conducted a quantitative evaluation on the totally 151
HDR images from the Fairchild dataset [12] and the HDR-
Eye dataset [33]. To fairly compare our results with Yang
et al.’s [51] and Zhang et al.’s [54], we adopted binocular
perception metrics (Ec, Ed , and E) proposed by Zhang et
al. [54] and Visible Difference Predictor (VDP) [4] used in
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Fig. 6 a Zhang et al.’s results; b our results. Our generated LDR pairs can better preserve both local details and global contrast

Yang et al. [51], under the same setting of their papers. Ec

and Ed respectivelymeasure the binocularly perceivedglobal
contrast and local details. A smaller Ec value indicates better
global contrast. Similarly, a smaller value of Ed means more
local details that have been preserved. E , which is the sum of
Ec and Ed , intuitively represents the preservation of the total
visual content. On the other hand, VDP indicates the visual
difference between the left and right images. A larger VDP
value means the image pair contains larger visual difference
but does not always indicate better preservation of visual
content.

As can be seen in Table 1, Yang et al. results achieves the
highest VDP because their method is designed to maximize
the VDP values of image pairs. High VDP can be usually
achieved by over-exposure in one view while keeping some
details in the other view. That is also the reason why they
are with the best global contrast preservation Ec. But they
sacrifice local details and lead to the worst local detail preser-
vation Ed . Compared with Yang et al.’s results, Zhang et
al.’s results achieve a better trade-off between global contrast
and local details. So they have a better E than Yang et al.’s
results. However, the same as Yang et al.’s method, Zhang et

Table 1 Statistics of quantitative evaluation

Score Ec Ed E VDP

{L∗
Yang, R

∗
Yang} 0.1816 0.4943 0.6759 0.0245

{L∗
Zhang, R

∗
Zhang} 0.3233 0.3435 0.6568 0.0150

{L, R} 0.2254 0.3581 0.5836 0.0112

Mean values are tabled. The smaller the values of Ec and Ed are, the
better the pair preserves global contrast and local details. E = Ec +
Ed measures the total visual content. Large VDP means large visual
difference between the two images of a pair
Bold values indicate the best score of a particular metric among the
different tested methods

al.’s method generates images with monocular tone mapping
operators, which cannot fully utilize the capacity of a binocu-
lar pair. Our local details preservation Ed is much better than
Yang et al’s and comparable to Zhang et al’s, while our global
contrast preservation Ec largely outperforms Zhang et al’s.
Moreover, the smallest E means our method is able to deliver
much more visual content than the other two methods.
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Fig. 7 Statistics of user study for visual comparison. The scores represent ratios of the users who picked our results. Mean values and 95% confident
intervals are illustrated

5.3 User study

We also conducted a user study to compare our method
with the two existing methods [51,54] in terms of local
details, global contrast, visual comfort, and overall prefer-
ence. Totally 50 images were used in the user study. Among
them, 25 imageswere used to compare ourmethodwithYang
et al.’s methods [51], while the other 25 images were used to
compare ourmethodwith Zhang et al.’s methods [51] Totally
14 participants joined this user study, including 7 males and
7 females. All the setting were the same as [51,54]. We show
the images on an ASUS G750JX laptop with a 3D display.
Users were asked to sit half ameter away from the 3D display
wearing the 3D glasses. The displaying luminance is set to
250 cd/m2.

For each group of questions, participants were shown two
different images side by side. One was generated by our
method and the other was generated by one of the existing
methods. The positions of the images were all random. Also,
the left and right views were randomly swapped. Participants
were asked to select the better image in terms of better preser-

vation of local details, better preservation of global contrast,
less visual discomfort, and the one they prefer. The score
was marked as 1 if the user picked our result. Otherwise, it
was marked as 0. Each image is regarded as a sample whose
scores for the four problems are calculated by averaging the
scores marked by different users. So the final scores for each
image indicate the ratios of the users who picked our result.
Figure 7 shows the statistics of the scores of the images. As
can be seen, our method greatly outperforms Yang et al.’s
in terms of local details, global contrast, visual comfort, and
preference. Also, our method slightly outperforms Zhang et
al.’s in all terms.

5.4 Timing statistics

We implemented our method using Pytorch [35], and tested
it on a PC with an Intel i7-6700K @ 4.0GHz CPU, 32GB
RAM, and an Nvidia GeForce GTX 1070 GPU. Running
times of the network were recorded for input images of dif-
ferent resolutions with and without GPU acceleration. For
each image resolution, we tested 100 images and recorded
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Table 2 Timing statistics (in seconds)

Image size CPU only With GPU

256 × 256 1.389 0.006

512 × 512 4.582 0.012

1024 × 1024 30.313 0.046

the average time. The timing statistics are shown in Table 2.
With the GPU acceleration, our method achieves real-time
speedup for the resolution of 1024 × 1024.

As reported in [54], for the resolution of 800×600, Zhang
et al.’s method [54] took 2.36 s for each iteration, while Yang
et al.’s method [51] took 22.24 s. It was tested on a PC with
Xeon E5-1620 v2 CPU @ 3.70GHz and 32GB RAM. No
GPU is used. A single iteration involves tone mapping and
energy function evaluation for one output image pair. Yang
et al.’s method was much slower since the calculation of
VDP [4] is quite time-consuming. For optimizing one sin-
gle parameter for global contrast with bilateral tone mapping
operator [8], Zhang et al.’s method could be solved with the
gradient descent solver which generally converged in 30 iter-
ations.

Thanks to the end-to-end network, our method generates
pairs without conducting iterative optimization. Compared
with the existing methods, our method achieves faster com-
putational speed and is easier to adopt GPU acceleration.

5.5 Limitations

Our method achieves an effective distribution of local details
to the LDR pair, improving detail perception and fusibility.
However, since the limited dynamic range of LDR images,
the trade-off between global contrast and local details still
exists. In order to contain more details, our method may lead
to a slight decrease in local brightness in the extremely bright
areas, compared with the other existing binocular tone map-
ping methods.

By separately providing referencing global contrast for
the two images, constraining the detail similarity between
them, and optimizing the perceived visual content, our pro-
posedmethod generates image pairs which are better than the
results generated by the state-of-the-art methods. But what
is the optimal distribution of visual content to the image pair
is still an open problem. So our method cannot guarantee to
generate image pairs with the optimal visual content.

6 Conclusion

In this paper, we proposed a CNN-based binocular tonemap-
ping method. We leverage the strong representability and

interpretability of CNN to automatically distribute the local
details and global contrast to a binocular image pair. Our
proposed method makes full use of the capacity of the two
images and can deliver more visual content than the exist-
ing methods. Loss functions in terms of local details, global
contrast, content distribution, and binocular fusibility were
designed for network training.

In the future, visual saliency models can be adopted into
our method to improve the visual content distribution abil-
ity. Also, binocular tone mapping from a stereoscopic HDR
image pair is another promising and useful extension. More-
over, although it involves far more complicated perception
models, how to generate binocular LDR video sequences
from HDR video sequences is worth keeping discovering.
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