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Transductive Zero-shot Action Recognition via
Visually-connected Graph Convolutional Networks
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Abstract—With the explosive growth of action categories, zero-
shot action recognition aims to extend a well-trained model to
novel/unseen classes. To bridge the large knowledge gap between
seen and unseen classes, in this paper, we visually associate
unseen actions with seen categories in a visually-connected graph,
and the knowledge is then transferred from the visual features
space to semantic space via the Grouped Attention Graph
Convolutional Networks (GAGCN). In particular, we extract
visual features for all the actions, and a visually-connected
graph is built to attach seen actions to visually similar unseen
categories. Moreover, the proposed grouped attention mechanism
exploits the hierarchical knowledge in the graph, so that the
GAGCN enables propagating the visual-semantic connections
from seen actions to unseen ones. We extensively evaluate the
proposed method on three datasets, i.e., HMDB51, UCF101,
and NTU RGB+D. Experimental results show that the GAGCN
outperforms state-of-the-art methods.

Index Terms—zero-shot learning, graph convolutional network,
action recognition

I. INTRODUCTION

Human action recognition has been extensively explored
due to its wide range of applications, e.g., video surveillance,
human-computer interaction, and robotics [37], [23], [5], [42],
[21]. However, with the increasing demand for different ap-
plications and the explosive growth of action categories, the
huge workload of manual labeling action data is unavoidable.
Therefore, extending a well-trained model to novel/unseen
classes is always challenging yet highly desired.

Zero-shot learning (ZSL) has been studied to overcome such
a restriction [19], [37], [53], [44]. It aims to recognize the
novel category by transferring the knowledge obtained from
the seen classes to model the unseen ones. As a result, the
core principle of ZSL is to find a good connection between
seen and novel classes for an accurate knowledge transfer.

Previous works transfer the knowledge by connecting
classes with various attributes [6], [34]. However, attributes are
not the best way to describe an action, as an action contains
both spatial and temporal information.
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Fig. 1. The green color elements belong to the seen classes and the oranges
belong to the unseen classes. We build the graph by linking all categories
in visual space and learn a projection model between the visual space
and semantic space. The semantic information of seen classes provides the
supervision, and the projection model can predict the semantic information
of the unseen classes.

An alternative solution is to transfer the knowledge from
the seen classes to the unseen ones by adopting the seman-
tic/textual representations as the auxiliary information [3],
[49], [17]. Specifically, they connect seen and unseen classes
by utilizing the relations hidden in the semantic/textual repre-
sentations. However, the descriptions of action classes (usually
a phrase or a sentence) contain far less information than
the action sequences, this imbalance knowledge between two
spaces makes the connections between seen and unseen classes
inaccurate.

We observe that human can easily identify similar actions
at a glance, and this process solely depends on the intrinsic
visual similarity between actions. Comparing with attribute or
textual information, spatial and temporal information contains
the richest and the most accurate action representations. For
example, actions “jump rope” and “rope climbing” may be
close to each other in the semantic space, but they show totally
different action movements.

As a consequence, we aim to connect seen and unseen
categories with their intrinsic visual similarity. To this end, we
propose a visually-connected graph convolutional network for
transductive zero-shot action recognition. Transductive ZSL
means the unseen data is available in the training phase [41],
[52]. Our approach aims to transfer the intrinsic relationships
in the visual space between the seen and unseen classes
to their semantic space, which can be seen in Figure I. In
particular, we extract the visual features on both the seen
and the unseen actions. Then, a visually-connected graph is
built by considering the distances among different categories
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TABLE I
ADVANTAGES AND DISADVANTAGES OF THE RELATED ZERO SHOT ACTION RECOGNITION METHODS.

Methods RSC [17] SER [47] PDA [48] MR [49] TOM [20] ZSECOC [33] VDS [53] BiDiLEL [43] Ours

Advantages

Utilizes visual relationships × × ×
√

× ×
√ √ √

Utilizes semantic relationships × × × × × ×
√ √

×
Domain adaptation

√
×

√
×

√
× × × ×

Discriminative semantic representations ×
√

×
√

×
√

× ×
√

Disadvantages

Ignores visual relationships
√ √ √

×
√ √

× × ×
Ignores semantic relationships

√ √ √ √ √ √
× ×

√

Requires auxiliary datasets or knowledge ×
√ √ √

×
√

× × ×
High complexity and computational costs × × ×

√
× ×

√ √
×

based on the discriminative features. We propose a grouped
attention graph convolutional network to propagate the visual-
semantic correlations of the seen actions to the unseen ones by
exploring the hierarchical structure on the graph. As a result,
unseen actions can be correctly recognized by matching the
corresponding label vectors. Extensive experiments demon-
strate that the proposed method outperforms state-of-the-art
approaches on three standard benchmarks.

The contributions of our paper are summarized as follows:
• We propose a visually-connected graph for transductive

zero-shot action recognition. It learns the correlations
between the visual feature space and the semantic space,
which can correctly propagate the seen classes knowledge
to unseen ones.

• We present a grouped attention graph convolution net-
work. It exploits the nodes in a hierarchical manner
for the convolutional operation, leading to an accurate
learning of visual-semantic mapping.

• The proposed model outperforms state-of-the-art ap-
proaches on three benchmarks, as well as different base-
lines.

II. RELATED WORK

A. General Action Recognition

Action recognition [22], [26] has been studied for years.
This problem has already gained great progress since deep
neural network showed its remarkable representability. In
addition, the explosive growth of data and the increasing
computational power push fully supervised action recognition
to the peak. Simonyan et al. [37] propose a two-stream CNN
for action recognition by incorporating spatial and temporal
information from video. Inspired by the two-stream model,
Wang et al. [42] present a Temporal Segmental Network
(TSN) to understand the long-range temporal information in a
video. Hara et al. [9] develop an effective approach for spatio-
temporal features learning using deep 3-dimensional convolu-
tional network. Recently, Temporal Relation Network (TRN)
is proposed by Zhou et al. [55] to learn temporal dependencies
in video frames at multiple time scales. Notwithstanding
the demonstrated success of the existing action recognition
methods, they are restricted by the demand of huge labeled
data.

B. Zero-shot Learning

Zero-shot learning [24], [17], [52], [54], [10] aims to
transfer the knowledge from the seen classes to the unseen

ones. It has been drawn attention due to the explosive growth
of unlabeled data and demand of classification for the unseen
classes. There are two settings in ZSL, the conventional setting
takes only the unseen videos as the test data, while the
generalized ZSL setting takes both seen and unseen videos
for testing.

For the generalized ZSL, the instances come from all classes
are formed as the test set. Previous zero-shot learning methods
mainly focus on still images. There are many approaches [2],
[4], [7], [52], [13] in ZSL rely on various attributes to
represent categories. These attributes are regarded as the side-
information for learning an embedding vector for ZSL. Recent
approaches use deep neural networks to map the visual space
to the semantic space. Ba et al. [19] present a neural network
to classify the unseen classes from their textual descrip-
tion. Recently, Wang et al. [45] propose a model to distill
information via semantic embedding and knowledge graph
using graph convolutional networks. Kampffmeyer et al. [14]
further explore the knowledge graph and achieve remarkable
performance on the ImageNet dataset. Both of them predict
the classifiers of the unseen classes. Recently, Gao et al. [8]
extend [45] and add another branch for predicting attribute-
features of objects. There are also several methods utilize
generative models for ZSL [53], [28], [46], [35], [12]. The
basic idea is to use different conditional Generative Adversar-
ial Networks (GAN) [27] for generating visual features of the
unseen classes conditioned on the semantic representations.
M2GAN [12] fuses various types of semantic representations
by a feature fusion network to generate pseudo visual features
for alleviating the “heterogeneity gap”. AgNet [13] aligns
different modal data into the semantic space, which bridges
the gap introduced by modality heterogeneity and ZSL.

There are only a few works in the field of zero-shot action
recognition. Some of them utilize semantic or visual rela-
tions among all classes in the mapping process. Bidirectional
latent embedding learning (BiDiLEL) [43] maps the visual
features and semantic representations to a shared latent space
while preserving the class relations. Visual Data Synthesis
(VDS) [53] generate visual features by a GAN while using
both semantic knowledge and visual distribution to build the
connections. However, these two models involve complex
optimization processes leading to large computational costs.
On the other hand, domain adaptation is also introduced for
aiding the mapping process, such as Regularised Sparse Cod-
ing (RSC) [17], Prioritized Data Augmentation (PDA) [48],
and Two output Model (TOM) [20]. They apply the learned
mapping model from the seen classes to the unseen classes
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Fig. 2. Overview of our framework. It consists of four components: a feature extractor, a visually-connected graph, a grouped attention graph convolutional
network, and a label vector matching for testing. The feature extractor produces visual features Vse and Vun as the input of the graph. For those seen classes,
we simply calculate the center of each cluster of the class. For the unseen classes, we apply a k-means clustering. Then we build the graph by considering
the distances among the action clusters. Our grouped attention graph convolutional network takes the center features of each cluster as the input and then
predicts its label vector. In the testing phase, we match the predicted label vectors of the unseen classes for recognition.

with domain adaptation. But they ignore the intrinsic relations
among different classes in two spaces. Some other works
focus on proposing a new semantic space for extracting
discriminative representations, such as word-vector or error-
correcting output codes [33], [49], [47]. Like them, we use
the discriminative word-vector as the semantic space. Unlike
them, we explore the relations that hidden in the visual space
by a novel graph convolutional network. We summarize the
advantages and disadvantages of the related works in Table I.

III. APPROACH

In this section, we first formalize the problem of zero-shot
learning, and then introduce four components of our zero shot
learning framework. Overview of our framework is illustrated
in Figure 2.

A. Problem Formalization

Zero shot learning aims to recognize the label of each
unseen sample by transferring the knowledge obtained from
the seen classes Sse = {(xi, yi)|i = 1, ..., I}, where xi denotes
the i-th seen video and yi ∈ Yse is the corresponding label. We
also denote Yun as the set of unseen classes, and in total there
are N categories in Yse and M in Yun. Note that in zero shot
learning setting, Yse and Yun are disjoint, i.e.Yse ∩ Yun = ∅.

B. Features Extractor

As we mentioned above, visual features show strong correla-
tion to an action. In this paper, we aim to learn the correlations
between the visual feature space and the semantic space. Thus,

we first extract visual features of an action by a pre-trained
network. Given a video sample xi, the visual feature of this
action is extracted by the features extractor F (·) and outputs
a visual features vector vi as follows:

vi = F (xi) (1)

We train the network using the video samples of the seen
classes. Then, we use this pre-trained network to extract
feature vectors for both the seen and unseen data.

C. Visually-connected Graph

Before we introduce the proposed visually-connected graph,
we first briefly review previous works that based on a
semantically-connected graph. They transfer the knowledge
by adopting the semantic/textual representations as the side
information. In this way, they perform zero-shot classification
by using the word embedding of the class labels and the
semantic similarity to predict the classifier for each unseen
class [44], [14]. We set this approach as the baseline in our
experiment.

Comparing to semantic features, visual features contain the
richest and the most accurate action representations. We build
the visually-connected graph by connecting seen and unseen
categories with their intrinsic visual similarity. Firstly, we
group the feature vectors extracted from the same action class
into a cluster. In the proposed graph, we define the mean
vectors of a cluster as the graph node. Since the correlations
between the labels and the visual features in seen classes
are known, the cluster center of seen class n can be simply
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Fig. 3. A toy example of our graph-based inference model, each node is
connected to 4 neighboring nodes in this example for simplicity. Each node
represents a category. αi represents the edge attention weight. The output is
the label vector of one category. GT is the Ground Truth of the seen classes’
label vectors, which provides the supervision information for training.

calculated the mean feature vectors with the same class as
follows:

cn =
1

w

w∑
i=1

vni , (2)

where w is the number of feature vectors in class n. Then the
cluster centers of all seen classes are defined as follows:

Cse = {cnse|n = 1, ..., N} . (3)

Due to the unknown correlations between the unseen classes
and their visual features, we initially apply the K-Means
clustering to the feature vectors to get the clusters of unseen
classes. Then the feature vectors Vun can be divided into M
clusters, where M is the number of unseen classes. Here,
we assume that all the features from the same cluster share
the same label. Then we get the cluster centers of all unseen
classes defined as follows:

Cun = {cmun|m = 1, ...,M} . (4)

Now we obtain N cluster centers in Cse and M centers in
Cun. These cluster centers are used to compose the nodes of
the graph, as shown in Figure 2. For each node in the graph,
we seek its k nearest neighbors in Cun∪Cse. After that, a dense
graph G of the visual features is conducted. Then the graph
G can be simply represented by an adjacency matrix A ∈
R(N+M)×(N+M), where R indicates the set of real numbers.
With this graph, All categories in seen and unseen classes are
linked with k neighbors.

D. Grouped Attention Graph Convolution Network

After building the graph, we transfer the knowledge from
the visual feature space to semantic space via a Graph Con-
volutional Network (GCN). The original GCN was proposed
for performing semi-supervised entity classification [16] and
the original GCN can be presented as:

Ŷori = σ(ÃXW ), (5)

where Ŷori denotes the output of the original GCN, σ(·)
denotes the non-linear activation function. Ã is the normalized
version of A. W is the trainable weight, and X denotes the
input.

The adjacency matrix A in the original GCN encodes the
connections among all nodes, but ignores their discriminative

distance relations. All edges are weighed equally in the
original GCN. However, for a host node, the contributions of
its neighbors should be different and dynamically determined
during training. In order to learn the dynamic weights of
neighboring nodes, we propose a Grouped Attention Graph
Convolutional Network (GAGCN) for predicting the label
vectors of unseen classes and the graph-based inference model
is illustrated in Figure 3.

As we utilize K-NN algorithm to form the graph, in the
visual feature space, a larger distance between two nodes
explicitly indicates less similarity and less contribution. In
GAGCN, we divided all edges in the graph into K groups
(the same as the K in K-NN algorithm, but not the same k
value in K-Means clustering above), the K-th group contains
the K-th nearest neighbor of each node to form the adja-
cency sub-matrix AK, and edges of the same group share
the same attention weight. In this way, a group of global
weight is assigned according to the local similarity conditions.
A simplified grouped graph is shown in Figure 4. Hence,
we replace the adjacency matrix A by K adjacency sub-
matrices {A1, A2, ..., AK} for getting a discriminative connec-
tion graph. Algorithm 1 shows the pseudo-code for producing
the K adjacency sub-matrices.

We define the learnable attention weight of group k as gk
and initialize gk with Gaussian distribution. Then we normal-
ize the group attention weights using a softmax function
αk = exp(gk)∑K

k=1 exp(gk)
. The proposed GAGCN can be represented

as follows:

Ŷ = σ(

K∑
k=1

ÃkXWkαk), (6)

where Ŷ is the output of our GAGCN, Wk is the trainable
weight of group k. Ãk is the normalized version of Ak. Our
GAGCN performs convolutions on the adjacency matrix Ak.
These graph convolutional operations can be stacked one by
one to form a network.

Our GAGCN takes the center features of categories as input
X = Cse∪Cun and X ∈ R(N+M)×C , here C is the dimension
of a center feature. The sub-matrix Ak has the same dimension
with the adjacency matrix A, which can be presented as
Ak ∈ R(N+M)×(N+M). Once the network is properly trained,
the grouped weights are adaptively learned for handling nodes
with different levels of similarities.

E. Training and Testing

Our GAGCN predicts the label vector for each class, and the
label vectors of the seen classes are provided as the ground
truth for training. We use the mean-square error as the loss
function, which can be computed as:

L =
1

N

N∑
i=1

(ŷseeni − yseeni )2, (7)

where ŷseeni is the predicted label vector of seen classes and
ŷseeni ∈ Ŷ , yi,j is the corresponding ground truth of label
vector. N is the number of the seen classes.

In the testing period, our GAGCN predicts the label vec-
tors of the unseen clusters Ŷun. For each predicted vector
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Fig. 4. Simplified example of our grouped graph. Each grid contains a host
node and its neighboring nodes and edges. Edges of the same colors are
grouped together and share the same weight.

Algorithm 1: Producing process for K adjacency sub-
matrices

Input: Mean vector set Cse ∪ Cun for all classes and
the number of nearest neighbors K;

Output: K adjacency sub-matrices;
1 for k = 1; k ≤ K; k ++ do
2 for Each vector cn in Cse ∪ Cun do
3 Seek the kth nearest neighbor cnk in the space

of Cse ∪ Cun − cn by calculating the cosine
similarity;

4 Build a connection between cn and cnk and add
it into adjacency sub-matrix Ak.

5 end
6 end
7 return {A1, A2, ..., AK}.

ŷm ∈ Ŷun, we seek its nearest neighbor in the space of
ground truth label vectors (includes ground truth label vectors
of unseen classes Yun) by calculating their cosine similarity.
The matched vector corresponds to the predicted label, which
can be presented as:

ym = argmax
yun

cos 〈ŷm, yun〉 , yun ∈ Yun. (8)

In this way, every cluster (unseen class) is assigned a label with
the highest label vectors similarity. As we discussed above, we
assume that all samples from the same cluster share the same
label, now we assign the label of each sample as its cluster
label.

IV. EXPERIMENTS

A. Datasets and Settings

We evaluate the proposed method on three benchmark
datasets. (1) HMDB51 dataset [18] consists of 6,766 videos
mostly from movies with 51 categories. These videos are RGB
videos, so we use RGB frame modality only in our experiment.
(2) UCF101 dataset [39] is collected from YouTube with
101 action categories, containing 13,320 video samples and
27 hours of video data in total. Same as the HMDB51 dataset,
we only report the experiment result of RGB information. (3)
NTU RGB+D dataset [36] is currently the largest dataset

with 3D joints annotations for action recognition. This dataset
contains 56,680 action samples in 60 action categories. This
dataset was collected by Microsoft Kinect camera in the indoor
environment, and it provides RGB videos, depth map se-
quences, 3D skeletal data, and infrared videos for each action
sample. Since this dataset was collected from indoor with
similar backgrounds for different categories, 3D skeletal data
contains more discriminative information than RGB videos. In
our experiment, we examine the proposed model with RGB
frame modality, skeleton modality, and their fusion. To the
best of our knowledge, we present the first attempt to perform
zero-shot action recognition on this dataset.

We follow the setting of [49], which splits each dataset
into seen and unseen classes evenly, i.e.30/30, 51/50, and
26/25, with regards to NTU RGB+D, UCF101 and HMDB51
datasets, respectively. For generalized ZSL, we follow the
work of Mishra et al. [29] to split 20% data of seen classes
for testing and the remains for training. Meanwhile, since our
method needs to obtain cluster centers by applying clustering
algorithm on the unseen data, we follow the work [38] that
assumes whether the test instances belong to the seen or the
unseen classes is known in advance. We generate 10 splits
randomly for each dataset, and the average accuracy and
standard deviation are reported.

B. Implementation Details

We use two types of features: RGB features and skeleton
features. For the RGB modality, the visual features are ex-
tracted by the last convolution layer of Temporal Segmental
Network (TSN) [42] with dimension of 1024. For the skeleton
modality, we utilize Spatial Temporal Graph Convolutional
Network (ST-GCN) proposed by Yan et al. [50]. The visual
features of skeleton modality are produced by the last convo-
lution layer of ST-GCN. Here, both TSN and ST-GCN are
trained on the seen classes with default settings from the
scratch. For getting the same dimension with RGB visual
features, we modify the kernel numbers of the last convolution
layer of original ST-GCN. We also report the fusion results of
two modalities, we fuse two heterogeneous visual features to
a new feature and take it as the input of GAGCN, our fusion
methods including mean fusion, max fusion and concatenate
fusion [5]. To be specific, mean fusion computes the mean
value of two features at the same spatial location and channel.
Max fusion takes the maximum of two features. Concatenate
fusion stacks two feature maps at the same spatial location
across channels. For the semantic representation, we use
GloVe text model [32] trained on the Wikipedia dataset to
encode each category into a 300-dimensions label vector. For
the multi-word category, we accumulate the vector of each
unique word.

When we utilized K-Means clustering to the feature vectors
to get the clusters of unseen classes, the cluster centers are
initialized randomly and always converge to the similar result
experimentally. Our GAGCN consists of 2 layers with 2048
hidden units, and rectified linear units (ReLU(·)) is used as
the activation function. L2 normalization is performed on the
outputs of the network and the ground truth label vectors for
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TABLE II
COMPARISONS TO THE STATE-OF-THE-ART ZSL ACTION RECOGNITION

METHODS ON UCF101 AND HMDB51 DATASETS. AVERAGE ACCURACY
AND STANDARD DEVIATION ARE REPORTED. VISUAL AND SEMANTIC

DENOTE THE VISUAL FEATURES AND SEMANTIC REPRESENTATIONS
RESPECTIVELY. MEANWHILE, D REPRESENTS THE DEEP VISUAL

FEATURES AND L REPRESENTS THE LOW-LEVEL FEATURES. WV IS THE
WORLD VECTOR, ATT IS THE ATTRIBUTES AND ECOC IS THE

ERROR-CORRECTING OUTPUT CODES. RANDOM GUESS IS THE LOWER
BOUND FOR EACH DATASET.

Methods Visual Semantic HMDB51 UCF101
Random Guess - - 4.0 2.0

Baseline D WV 14.7±2.3 13.7±1.2
RSC [17] L WV+Att - 14.0±1.8
SER [47] L WV 21.2±3.0 18.6±2.2
MR [49] L WV 24.1±3.8 22.1±2.5
PDA [48] L WV 24.8±2.2 22.9±3.3
TOM [20] D WV - 26.8±4.4

ZSECOC [33] L ECOC 22.6±1.2 15.1±1.7
VDS [53] D WV 25.3±4.5 28.8±5.7

BiDiLEL [43] D+L WV 22.3±1.1 23.0±0.9

Ours D WV 29.8±2.2 30.0±1.8

TABLE III
COMPARISONS TO THE STATE-OF-THE-ART GENERALIZED ZSL ACTION

RECOGNITION METHODS ON UCF101 AND HMDB51 DATASETS.
AVERAGE ACCURACY AND STANDARD DEVIATION ARE REPORTED.

Methods HMDB51 UCF101

SJE [1] 10.5±2.4 8.9±2.2
ConSE [30] 15.4±2.8 12.7±2.2

GA [29] 20.1±2.1 17.5±2.2
Objects2Action [11] - 30.3

Ours 32.5±2.5 35.6±2.1

both training and testing. We train our GAGCN for 50000
epochs using Adam optimizer [15] with the learning rate of
0.001 and weight decay of 0.0005, and the experiments is
performed with PyTorch using an Nvidia 1080Ti GPU. The
source code is available at this link.

C. Compared Methods

For HMDB51 and UCF101 dataset, we compare our model
with various zero-shot action recognition methods existing
in Table I. For NTU RGB+D dataset, there are no zero-
shot learning results have been reported so far. This dataset
provides two standard splits for fully supervised classification,
which includes cross-subject split and cross-view split [36],
we compare with the fully supervised methods under different
modalities in the cross-view split. We set the semantically-
connected graph with the original GCN when k = 10 as the
baseline on three datasets in our experimental, and other im-
plementation details are set the same as the visually-connected
graph.

The experimental results on UCF101 and HMDB51 datasets
with conventional and generalized settings are shown in Ta-
ble II and Table III respectively. From the tables we can have
the following observations:

(1) All approaches significantly outperform the random
guess, shows the effectiveness of zero-shot learning in action
recognition.

TABLE IV
COMPARISONS TO FULLY SUPERVISED METHODS ON NTU RGB+D
DATASET. AVERAGE ACCURACY AND STANDARD DEVIATION ARE

REPORTED. RANDOM GUESS IS THE LOWER BOUND UNDER THE SETTING
OF ZERO-SHOT LEARNING. ZSL?: ZERO-SHOT LEARNING MODEL OR NOT.

MODALITY: THE USED MODALITY, INCLUDING RGB, DEPTH, AND
SKELETON (SKE) VIDEOS.

Methods ZSL? Modality Accuracy

Random Guess
√

- 3.3

Baseline
√

RGB+Ske 24.3±2.3
HON4D [31] × Depth 7.3

SNV [51] × Depth 13.6
Lie Group [40] × Ske 52.8

Ours
√

RGB+Ske 28.5±2.8

(2) Generally, the deep visual feature based methods out-
perform the low-level visual features, which indicates that the
choice of visual representations is of vital importance for ZSL.

(3) Our approach beats the baseline method which links
the categories by their semantic similarities, which shows the
effectiveness of our visually-connected graph and the grouped
attention method.

(4) Our approach outperforms state-of-the-art methods by
a large margin on both UCF101 and HMDB51 datasets with
different settings, which demonstrates the effectiveness of the
proposed method.

The experimental results on NTU RGB+D dataset are shown
in Table IV. We can see that the proposed zero-shot learn-
ing method is not comparable to the latest fully supervised
approaches. It is apparent that zero-shot learning is a much
harder task than fully supervised action recognition. On the
other hand, the proposed approach still outperforms the two
fully supervised methods HON4D [31] and SNV [51], even
though we under the restrict zero-shot learning setting.

D. Ablation Studies

We conduct the ablation studies to further evaluate the
effectiveness of different components in our framework. We
report the performances of the proposed visually-connected
graph, the grouped attention mechanism, and the parameters
of k in the K-NN algorithm for building the graph (k edges
for each node). For the sake of simplicity, we only report the
results on HMDB51 and UCF101 datasets. From the results
shown in Table V, we can draw the following observations:

(1) The visually-connected graph outperforms the
semantically-connected graph both with the original GCN and
GAGCN with respect to different k values, which shows that
the proposed visually-connected graph models the relationship
between seen and unseen classes much more accurate than
the semantically-connected graph does. This is because our
visually-connected graph is more accurate for representing
the relations among different action classes. More qualitative
results will be presented in Section IV-E.

(2) GAGCN outperforms the original GCN, which demon-
strates the effectiveness of the attention mechanism in
GAGCN. This is mainly because the attention mechanism in
GAGCN can strengthen the weights of the nearest neighbors

https://github.com/Qingyang-Xu/GAGCN
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TABLE V
EXPERIMENTAL RESULTS WITH THE DIFFERENT VALUES OF k FOR THE VISUALLY-CONNECTED AND SEMANTIC-CONNECTED GRAPH WITH ORIGINAL

GCN AND GAGCN, AVERAGE % ACCURACY AND STANDARD DEVIATION FOR HMDB51 AND UCF101 DATASET.

K
HMDB51 UCF101

Semantically-connected Visually-connected Semantically-connected Visually-connected
OriGCN GAGCN OriGCN GAGCN OriGCN GAGCN OriGCN GAGCN

5 17.4±2.9 23.2±4.5 25.6±2.8 29.7±2.3 13.3±1.7 14.6±1.8 26.9±1.7 29.4±2.8
10 14.7±2.3 17.0±3.2 23.4±1.8 29.8±2.2 13.7±1.2 14.8±6.5 24.3±1.8 30.0±1.8
15 17.2±3.5 25.3±3.1 22.7±2.4 28.6±1.8 12.2±0.9 12.9±0.5 22.8±1.6 29.7±1.9
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Fig. 5. Attention weights of the trained GAGCN when k = 5 (left) and
k = 10 (right) on the UCF101 dataset.

while weakens the negative impact from the unnecessary
edges.

(3) As the value of k increases, the performance of the
original GCN gets worse, but GAGCN can keep a steady
performance. This reveals that the attention mechanism in our
GAGCN can reduce the influence of unnecessary edges. Also,
the best value of k is 10 for both datasets, and we set k = 10
in all the following experiments.

We also analyze the attention weight of the trained GAGCN
with respect to k = 5 and k = 10, on the UCF101 dataset,
As shown in Figure 5, we can see that when the attention
weight of group 1 is significantly larger than the other groups.
This indicates that the knowledge mainly propagated among
the nearest neighbors. Meanwhile, as the k increases, the
latter groups are assigned with little attention weights. We
believe this is the key reason for GAGCN can keep a steady
performance with a large k, while the original GCN weights
all the edges equally.

We further analyze the effectiveness on the purity of the
cluster to the final ZSL performance. The purity of the cluster-
ing result is measured by the Normalized mutual information
(NMI) scores, and NMI score is defined as:

NMI(T, P ) =
I(T, P )√
E(T )E(P )

, (9)

where I(·) is the mutual information and E(·) denotes the
entropy, T is the truth label result and P is the clustering result.
NMI ranges from [0, 1] and a larger NMI score indicates a
purer clustering result. In Figure 6, we report the experimental
result (accuracy and NMI) with a different number of iterations
in the K-Means algorithm on a split of HMDB51 dataset.
We can see that as with more iterations, K-Means clustering
obtains an increased NMI score indicating a more purity

1 2 3 4 5 6 7 8 9 10
Iterations

0.20

0.25

0.30

0.35

0.40

0.45

0.50
NMI
ACC

Fig. 6. NMI scores ans ZSL accuracies with respect to different iterations in
K-Means algorithm on a split of HMDB51 dataset.

TABLE VI
EVALUATION WITH RESPECT TO DIFFERENT MODALITIES AND THEIR

FUSION RESULTS ON NTU RGB+D DATASET. MODALITIES: RGB VIDEO
AND SKELETON (SKE) VIDEO FOR NTU RGB+D DATASET. FUSION

METHODS INCLUDE MAX FUSION (MAX), MEAN FUSION (MEAN), AND
CONCATENATE FUSION (CONCAT). THE RESULTS OF ORIGINAL GCN

(ORIGCN), GAGCN ARE ALSO REPORTED.

Modalites OriGCN GAGCN

RGB 23.4±1.6 27.6±2.6
Ske 24.2±4.1 28.1±3.3

Max 24.3±2.9 27.8±3.1
Mean 24.3±2.3 28.5±2.8

Concat 24.6±2.3 27.9±2.6

result. On the other hand, unsurprisingly, the accuracy has a
positive correlation with the purity, which implies that a better
cluttering result can achieve a better recognition performance.

We also conduct an experiment shown in Table VI for the
comparison of single modality input, RGB, and skeleton fea-
tures respectively. We can observe that the skeleton modality
demonstrates a better result than RGB modality. In the mean-
while, we also compare the performance of three different
fusion methods, i.e., mean fusion, max fusion, and concatenate
fusion. Mean fusion achieves the best result among three
fusion methods.

E. Analysis on Visually-connected Graphs

In this subsection, we aim to explore the differences
between the original semantically-connected graph and our
visually-connected graph by visualizing action samples in
different spaces. We provide some actions and their neighbors
both in the visual space and the semantic space, their t-
SNE [25] visualizations can be seen in Figure 7. For action
“head massage” in Figure 7(a), its top-5 nearest neighbors
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Visual Space
head massage
playing piano
skateboarding
haircut
ice dancing
band marching

Semantic Space

head massage
body weight squats
walking with dog
table tennis shot
apply eye makeup
blow dry hair

(a) Action “Head Massage” and its Top-5 Neighbors in Two Spaces

Visual Space
pommel horse
pullups
cricket bowling
hammering
field hockey penalty
body weight squats

Semantic Space
pommel horse
horse riding
horse race
floor gymnastics
trampoline jumping
uneven bars

(b) Action “Pommel Horse” and its Top-5 Neighbors in Two Spaces

Fig. 7. t-SNE visualizations for two actions and their neighbors in different
space. Each colored cluster represents an action category in visual and
semantic spaces.

in the visual space are “playing piano”, “skateboarding”,
“haircut”, “ice dancing”, and “band marching”. The hand
movement information is involved both in “head massage” and
“playing piano”, our visually-connected graph takes “playing
piano” as its nearest neighbors. Meanwhile, “haircut” is highly
related with the “head”, hence, we take it as the third nearest
neighbor of “head massage”. There are also some negative
neighbors are selected, i.e., “skateboarding” and “band march-
ing”, but the group attention mechanism in GAGCN can
reduce its contribution dynamically. On the contrary, the top-
5 neighbors in the semantic space are “body weight squats”,
“walking with dog”, “table tennis shot”, “apply eye makeup”,
and “blow dry hair”, which are less relevant to those in the
visual space.

A more interesting example is shown in Figure 7(b). The
neighbors of action “pommel horse” in the semantic space is
“horse riding”, “horse race”, “floor gymnastics”, “trampoline
jumping”, and “uneven bars”, but “pommel horse” and “horse
riding” show totally different movement. We believe that the
word “horse” in both classes leads the negative neighbors. In
contrast, its neighbors in the visual space are “pullups”, “body
weight squats”, “field hockey penalty”, “fencing”, and “cricket
bowling”. Both of them have similar movements, making an
accurately connected graph.

F. Limitations

Due to our transductive setting, our model requires to

process unseen videos (without labels) and thus cannot be
applied in an inductive setting. However, in practice, the most
difficult to obtain are the labels of unseen videos, while unseen
videos themselves are massively generated day-by-day. As a
result, transductive setting is a practical solution under the
current circumstance. Besides, similar to other transductive
methods [52], [41], the category number of unseen data is
also required in our model because K-Means clustering is
performed in advance. This problem might be mitigated to use
the clustering algorithm that without the need of the number
of clusters, such as DBSCAN or Mean-Shift clustering.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel framework to learn a
propagation between visual space and semantic space for zero-
shot action recognition. We first propose an visually-connected
graph to accurately link the seen and unseen categories. Then
a GAGCN is proposed to exploit the hierarchical knowledge in
the graph, meanwhile predicting the label vectors of unseen
categories. Extensive experiments demonstrate that the pro-
posed method outperforms state-of-the-art methods on three
benchmark datasets.

The proposed methods mainly address the problem of the
graph connection and the information flow of graph convolu-
tional networks, which can be applied to different applications
in the future. Also, we plan to study the correlations between
graph connections and the architecture of graph convolutional
networks.
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