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Abstract
We propose a novel deep example-based image colourization method called dense encoding pyramid network. In our study,
we define the colourization as a multinomial classification problem. Given a greyscale image and a reference image, the
proposed network leverages large-scale data and then predicts colours by analysing the colour distribution of the reference
image. We design the network as a pyramid structure in order to exploit the inherent multi-scale, pyramidal hierarchy of colour
representations. Between two adjacent levels, we propose a hierarchical decoder–encoder filter to pass the colour distributions
from the lower level to higher level in order to take both semantic information and fine details into account during the colourization
process. Within the network, a novel parallel residual dense block is proposed to effectively extract the local–global context of
the colour representations by widening the network. Several experiments, as well as a user study, are conducted to evaluate the
performance of our network against state-of-the-art colourization methods. Experimental results show that our network is able
to generate colourful, semantically correct and visually pleasant colour images. In addition, unlike fully automatic colourization
that produces fixed colour images, the reference image of our network is flexible; both natural images and simple colour palettes
can be used to guide the colourization.

Keywords: image and video processing, image processing

ACM CCS: I.3.3 [Computer Graphics]: Picture/Image; Computing Methodologies: Neural Networks, Computational
Photography

1. Introduction

The goal of the image colourization is to turn a greyscale image into
a colour image. It is motivated by the demand for image editing to
restore the colour of old pictures and videos. However, to recover
the already lost colour information is challenging. Additional in-
formation like user interactions or a colour image as a reference
may be an alternative solution for this ill-posed problem. Existing
image colourization techniques can be summarized into two main
categories, traditional colourization with user interactions, learning-
based automatic colourization.

At the early stage, most of the colourization methods, e.g.
[QWH06, LWCO*07, RKB04, LLW04, XYJ13], were proposed

∗Joint first authors.
#Corresponding author.

with the requirement of user interactions, like colour scribbles or
manual segmentation. Guided by the user input, an optimization
process was used to propagate the colours. It is good for users
to control the colours of what they want. However, the optimiza-
tion process is usually computation-intensive and time-consuming.
Moreover, colour leakage and drifting may often occur at the regions
with open boundaries. Since such simple manual hints are not able
to deliver rich enough colour information, some works [WAM02,
ICOL05] proposed to colourize images guided by a reference im-
age. However, traditional example-based methods were trapped by
the similarity between the reference and the greyscale images. Once
the discrepancy of reference and greyscale images is large, these
methods may not be able to guarantee a visually reasonable result.

With the evolution of CNN, more data-driven automatic colour-
ization methods were proposed. The approaches [CYS15, ZIE16,
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(a) Original (b) [ZIE16] (c) [LMS16] (d) [ZZI∗17] (e) [HCL∗18] (f) Ours

Figure 1: Previous deep learning-based methods, e.g. automatic methods (b and c) and example-based methods (d and e), cannot fully
explore the local–global context information, leading to unsatisfactory results. Our dense encoding pyramids (f) is able to produce plausible
results with varied colours according to the reference images or colour palette. More importantly, it is more user-friendly than others since
users can easily manipulate the colour palettes for desired styles, like the second row. Our results are more faithful and have less colour
drifting (first row of d) than results from other methods. Images that are placed at the bottom left corner are the reference images.

LMS16] presented the fully automatic colourization network by
learning from a large-scale colour image data. Iizuka et al. [ISSI16]
learned the semantic information from an image and automatically
colourized the image according to the global priors and local im-
age features. However, the learning-based automatic methods are
not flexible for generating images with desired colour distribu-
tions. Zhang et al. [ZZI*17] proposed a deep user-guided colour-
ization method, but such user interactions have a latent require-
ment that users should have good enough art sense for choosing
a suitable colour scheme, especially for realistic images. Other-
wise, the colourized image maybe unnatural. Furthermore, existing
deep colourization networks cannot explore the local–global con-
text well, which leads to semantically wrong and dull colourization
results (see Figure 1).

In this paper, we propose a novel deep example-based colouriza-
tion method, which is called the Dense Encoding Pyramids Network
(DEPN). The key idea of our method is that the image colour priors
always come from the image itself. Our network performs colour-
ization by mapping the colour distribution from a reference image
to a greyscale image. We design our network as a pyramid form in
order to leverage the pyramidal shape of the colour representations
hierarchy. Furthermore, we propose a novel Parallel Residual Dense
Block (PRDB) for exploring richer local–global context information
within the network. A Hierarchical Decoder–Encoder Filter (HDEF)
is proposed to aggregate the colour distribution results between two
adjacent levels. Extensive experiments are conducted to evaluate the
performance of our method. Experimental results demonstrate the
proposed method outperforms the existing methods quantitatively
and qualitatively, and it shows a clear preference in the user study
over previous methods.

2. Related Works

2.1. Traditional colourization

To restore the lost information from a greyscale image, traditional
colourization methods require some guidance from users, either user

interactions or a reference image. Levin et al. [LLW04] proposed
an optimization-based method with the requirement of input colour
scribbles. Qu et al. [QWH06] proposed a user interactive method
for manga colourization. Sýkora et al. [SBv04] presented a colour-
ization method for hand-drawn cartoons. Luan et al. [LWCO*07]
applied texture information for better colour propagation. The above
methods apply optimization according to the user interactions and
then propagate the colours. They allow users to take full control
of the colours. However, the optimization process is computation-
ally intensive. In addition, manually drawn scribbles are not able to
deliver rich enough colour information.

Some colour transfer methods [TJT05, RAGS01, WDK*13] can
also be applied on transferring colour to a greyscale image. They es-
tablish a mapping function to map the colour distribution from one
to another. Similar to colour transfer techniques, [WAM02] colour-
izes images guided by a reference image without user intervention.
They transfer the colour from the reference image to target image by
matching luminance and texture information between them. Ironi
et al. [ICOL05] introduced a method to colourize greyscale images
by transferring colour from a segmented example image. Gupta
et al. [GCR*12] proposed an example-based colourization method
by leveraging superpixel representation to guide the colourization
process. However, their method requested the reference image has
to be similar to the greyscale image. Bugeau et al. [BTP14] pro-
posed a variational approach to select the best colour among a set
of colour candidates while simultaneously ensuring the local spa-
tial coherency of the reconstructed colour information. However,
traditional example-based methods were trapped by the similarity
between the reference image and the greyscale image. Once the
style discrepancy of the reference image and the greyscale image
is large, these methods may not be able to guarantee a visually
reasonable result.

2.2. Learning-based colourization

With the evolution of CNN, more automatic colourization methods
were proposed. Cheng et al. [CYS15] and Zhang et al. [ZIE16]

c© 2019 The Authors
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presented fully automatic colourization networks by leveraging
large-scale colour image data [ZLX*14, RDS*15]. However, these
fully automatic methods without any other hints highly rely on the
training data. Once the input image is not covered by the training
data, it may fail to generate a reasonable and visually pleasant result.
Iizuka et al. [ISSI16] learned the semantic information from an im-
age and automatically colourized the image according to the global
priors and local image features. Larsson et al. [LMS16] leveraged
deep semantic information associated with a per-pixel colour his-
togram to estimate the colour of each pixel. Royer et al. [RKL17]
developed a probabilistic technique which can generate different
plausible colourizations. Guadarrama et al. [GDB*17] utilized two
networks to produce multiple colourization results automatically.
A conditional PixelCNN was used to generate a low-resolution
colour image while another CNN was used to give a high resolution
one. But such user interactions have a latent requirement that users
should have good enough art sense for choosing a suitable and har-
monious colour scheme, especially for realistic images. Otherwise,
the colourized image may be unnatural.

Some example-based methods are proposed to let the user con-
trol the colour distribution by providing a reference image. Zhang
et al. [ZZI*17] proposed a deep user-guided colourization method.
The network propagates user interactions by fusing low-level cues
along with high-level semantic information which learned from
large-scale data. However, colourization results highly depend on
the quality of the reference image. In the meanwhile, it also has to
be as similar as possible to the target image. He et al. [HCL*18]
presented an example-based local colourization approach with two
subnetworks. The similarity subnet was designed to find the seman-
tic correspondence between the reference and greyscale images,
then fuses multi-level warped features. The colourization subnet
takes the output of the similarity subnet to generate vivid results.
However, when feeding a reference image which lacks semantic
information, like a simple colour palette, the whole network fails
to produce plausible results. This is because the similarity subnet
cannot obtain semantic and luminance information.

Our proposed network leverages large-scale data to encode colour
information in our model. It is able to colourize image by showing
the network only one reference image without any other manual
hints. Different from the fully automatic colourization networks,
our network can generate different colourization results according
to different reference images.

2.3. Colour transfer

Colour transfer techniques can also achieve colourization given a
reference image. Chang et al. [CFL*15] introduced a palette-based
approach to recolour an image. It developed an accelerated cluster-
ing method to produce a colour palette from one image. They achieve
colour transfer by user changes of the colour palette. Wang et al.
[WZL*17] presented a two-stage method which includes similar-
ity mapping and detail conservation. The similarity mapping model
used super-pixel sampling and K-means clustering to extract the in-
termediate features in RGB space from the input and the reference
image. Then an L0 gradient-preserving algorithm was developed to
generate the transfer results by controlling the gradients of pixels
within their colour regions.

Our colourization method can also be applied to colour transfer
by simply removing the chrominance channel of the original image
and produce diverse colour images given different references.

2.4. Pyramid structure

Pyramid structure has been widely used in solving computer vi-
sion problems. Spatial pyramid pooling methods [LSP06, GD05,
YYGH09] extract image context at different scales which can re-
duce the computational complexity. He et al. [HZRS14] introduced
spatial pyramid pooling into the CNN to make it possible to generate
representations from arbitrarily sized images. Chen et al. [CPK*18]
proposed atrous spatial pyramid pooling, where parallel atrous con-
volution layers with different sampling rates and effective fields-
of-views to capture multi-scale information. Zhao et al. [ZSQ*17]
conducted a pyramid scene parsing network which performs spatial
pooling at several grid scales and achieved great performance in
semantic segmentation. The proposed method, on the other hand, is
designed with the different information flow and recurrent mecha-
nism for accurate and varied colour assignment.

2.5. Residual and dense structure

Recently, some residual and dense structures are proposed to ex-
tract hierarchical features and make full use of them. Huang et al.
[HLWvdM17] presented DenseNet to fuse features from each layer,
which effectively overcome the vanishing-gradient problem with
much fewer parameters. DenseNet consists of a number of dense
blocks, in which any layer connects to all subsequent layers. It is
an efficient extractor for many computer vision and graphics prob-
lems. Zhang et al. [ZTK*18] introduced a residual dense block
(RDB) for image super-resolution. Through dense connected con-
volutional layers, RDB bridges directly from the former layers to all
of the current layers, providing a contiguous memory. In addition,
global features fusion is applied to integrate all the RDBs, which
performs well in image super-resolution. Zhang et al. [ZLL*18] con-
ducted a very deep residual channel attention network which builds
a highly accurate model for image SR. The residual in residual
(RIR) structure is introduced to increase the depth of the network,
which helps filter the abundantly invalid information by several
skip connections.

However, for image colourization, an extremely deep architecture
may not be helpful. It is because both low- and high-level knowledge
is necessary for generating semantically correct and vivid colour
images. Thus, taking full advantage of multi-scale features is more
important than learning more redundant features. In our paper, we
propose a parallel structure based on RDB [ZTK*18] to extract
low- and high-level information effectively in a wider network. The
residual and dense structure allows the network to learn low-level
information and extracts features than the normal convolution. The
proposed PRDB aims at aggregating more information from the
dense parallel structure.

3. Method

The architecture of the proposed DEPN is illustrated in Figure 2.
It aims at more semantic-correctly map the colour distribution of

c© 2019 The Authors
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4 C. Xiao et al. / Example-Based Colourization Via Dense Encoding Pyramids

Figure 2: Our network structure. For each level of the pyramid, the network branch takes a greyscale image under specific resolution as an
input image. The deep colour distribution features of the reference image are extracted by parallel residual dense blocks and then are utilized
to guide every level of the pyramid. The hierarchical decoder–encoder filter is proposed to pass the colour distributions from lower level to
higher level. Note that the number of feature maps in each block at each level is all the same.

the reference image onto the input greyscale image. We design the
network as a pyramid structure in order to exploit the inherent multi-
scale, pyramidal hierarchy of colour representations. The PRDBs
are proposed to extract abundant features within the network by
making the network wider instead of deeper, which is important
to generate varied colour images. We further define an HDEF to
promote the information propagation between different layers of
the pyramidal network, avoiding potential error accumulation by
harnessing information extracted from other layers as guidance.
The colour distribution of the reference image is extracted by an
encoder followed by a PRDB and then is injected into each level as
the guidance of the colourization process. We shall systematically
introduce the implementation, as well as the underlying thoughts,
of each component of the proposed DEPN, including its objective
function (Section 3.1), the network architecture (Section 3.2), the
PRDBs (Section 3.3), the HDEF (Section 3.4), the reference image
feature extraction (Section 3.5) and the implementation and training
details (Section 3.6).

3.1. Objective function

Given a greyscale image X and a reference image Y , our network
aims to learn the mapping F(X, Y ) in order to colourize X with the
colour distribution of Y . In our study, we utilize CIE Lab colour
space instead of RGB because of the perceptual uniformity with re-
spect to human colour vision. Our network regards X ∈ R

H×W×1

as the L channel then outputs the result X̂ ∈ R
H×W×2, which

indicates the ab channels of the image. Similar to Zhang et al.
[ZIE16], we define the colourization problem as a multinomial clas-
sification. We quantize the ab channels into grids with the size of
10 so that the number of colour pairs of ab channels can drastically
decrease, which is capable of greatly reducing the computation. As a
result, we keep the vector Q with 313 values in the gamut, indicating
the number of ab pairs.

According to our pyramid network design, the objective of each
network branch (as shown in Figure 2) is to minimize the expected
classification loss over the training data set:

θ̂ i = arg min
θi

(Lcl(F i(Xi, Y i ; θ i), Y i)), (1)

where θi indicate the parameters in the ith-level network branch.
Lcl is the cross entropy loss function with the rebalancing weight
to measure the errors between the prediction of colour distribution
Ẑ and the ground truth colour distribution Z ∈ R

H×W×Q of the
reference image Y . To the end, the loss function of our network at
the ith level is defined as:

Lcl(Ẑ
i , Zi) = −

∑
h,w

ωi
(
Zi

h,w

)∑
q

Zi
h,w,q log

(
Ẑi

h,w,q

)
, (2)

where ωi represents the rebalancing weight of Zi
h,w . It is able to

correct the unbalanced foreground–background distribution of ab
values.

c© 2019 The Authors
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3.2. Dense encoding pyramids

The previous methods [ZIE16, ZZI*17, HCL*18] only consider a
single-scale image as reference. However, the major drawback of
this scheme is that they lack local–global context of the colour
representations. In this paper, we propose a novel pyramidal struc-
ture, which inputs the multi-scale images and lets the features
from lower levels guide the higher levels in a coarse-to-fine
manner.

As shown in Figure 2, our DEPN consists of several network
branches in a pyramid form. The main advantages brought by
the pyramid structure are the multi-scale contextual information
and the recurrent prediction mechanism. Although the distributions
of the reference image are the same across different scales, the as-
signed colours are depending on a certain region of image content,
which directly affected by the input resolution and receptive fields
of the network. Our pyramid structure colourizes image from four
different scales of contextual information. Furthermore, the recur-
rent mechanism predicts colour image in a coarse-to-fine manner
with progressive refinement.

Here, we denote the number of pyramid levels as l. In principle,
the proposed DEPN can be considered as a coarse-to-fine process
for image colourization. As can be seen in Figure 2, each network
branch can be regarded as a complete network for colourization at
a specific resolution. For example, considering the ith level F i , it
receives a greyscale image Xi and a reference image Y i , which are
downsampled 2l−i times from X and Y , respectively. Each branch
starts with shallow feature extraction by four normal convolution
blocks. Then, three PRDBs (will be elaborated in Section 3.3) are
inserted to extract rich features with diverse scales. Colour distri-
butions of the reference image are injected into the first PRDB as
the colour hints. After a deconvolution block, a convolution block
and a decoder, the network can generate the predicted ab channels
of Ŷ i .

To aggregate the features between two adjacent levels, i.e. F i−1

and F i (i > 1), we further propose an HDEF (will be elaborated in
Section 3.4). HDEFs, which are associated with PRDBs, build con-
nections between the adjacent two levels to pass on the information
from the lower level to higher level. Note that there is no aggregation
at the lowest level when i = 1. As a result, the assembled DEPN is
defined as follows:

F(G, X) =
{F i(Xi, Y i), i = 1

F i(Xi, Y i,�(F i−1)), i > 1,
(3)

where � indicates HDEF. We train the network progressively so
that the network will be more adaptive to multi-scale colourization,
confirming high robustness in high resolution. At the last level F l ,
the ab value of X̂l , which is decoded from Zl , is upsampled to
the resolution of the original input image by bilinear interpolation.
X̂ combining with the L channel of X forms the output colour
image. In this way, our pyramid structure allows assigning accurate
and semantically correct colours. We demonstrate its effectiveness
quantitatively in Section 4.4.

(a)

(b)

Figure 3: Structure of chained residual dense block [ZTK*18] and
our proposed parallel residual dense block. For simplification, the
ReLU activation layers are hided in all conv 3*3 blocks.

3.3. Parallel residual dense block

We propose the PRDB to exploit diverse features of F i . The pro-
posed PRDB is used to extract the rich feature representations of
images including input image, reference image and output image.
It is advantageous to our colourization application compared with
original residual block [HZRS16] and recently proposed chained
RDB [ZTK*18] (Figure 3a).

The residual and dense structure is beneficial to memorize the
low-level information and extract rich features than the normal con-
volution. Although these existing models [HZRS16, ZTK*18] are
capable of extracting rich semantic information using deeper net-
works, such a deep architecture may not be helpful for our colour-
ization process (see Section 4.4 for the relevant experiments). This is
because colourization relies equally on low- and high-level knowl-
edge for producing semantically correct and varied colour images.
Taking full advantage of multi-scale features is more important than
learning more redundant features. In this regard, instead of making
the network deeper as the chained RDB does, we make our network
wider by PRDB, which aims at aggregating more information from
the parallel dense structure. As shown in Figure 3(b), unlike chained
RDB, our proposed PRDB contains two densely connected struc-
tures extracting the features in parallel. The features of two branches
are concatenated and fused by a 1 × 1 convolution layer. Since the
features from two parallel branches are concatenated, our PRDB is
to separately learn a hyper feature, each branch corresponds to half
of it. It shortens the required information flow within the block and
thus reduces the learning ambiguity. In addition, we add a convo-
lution layer at the beginning of PRDB for trimming the foregoing
block, and another convolution layer followed by the batch normal-
ization at the end for integrating information and fast convergence.
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In each PRDB, each convolution layer except the fusion layer
is set to kernel size of 3 × 3 and padding size of 1 to fix the size
and followed by the ReLU [GBB11]. The fusion layer is set to
a kernel size of 1 × 1 without the ReLU layer. Input and output
layers of PRDB receive r0 feature maps. Densely connected layers
receive r0 + (l − 1) × r feature maps, where r denotes growth rate
[HLWvdM17]. We increase r to 256 gaining wider layers by only
paying negligible computational complexity, as PRDB is merely
applied in the small size of features of each level. In Section 4.4,
we conduct an experiment to compare the performance of chained
RDB and PRDB.

3.4. Hierarchical decoder–encoder filter

Similar to the encoder–decoder structures [BKC17, MSY16,
CZK*17], our pyramidal network is a global encoder–decoder. The
encoder injects low-level information into high-level features, while
the decoder restores the chrominance of final results from the clas-
sified value. However, the error from the lower level will be accu-
mulated, and thus increasing the redundant information. To avoid
error accumulation between adjacent levels, we define the HDEF,
an asymmetric decoder–encoder, as the connection of two adjacent
levels to pass on information from F i−1 to F i (i > 0) effectively.
Meanwhile, the encoder is applied to transfer the colour values into
the colour distributions. The decoder is able to produce the result
Y i of each level.

3.4.1. Encoder

Similar to Zhang et al. [ZIE16], we encode the dense colour infor-
mation to colour distributions by applying soft-encoding. It allows
the network to distill knowledge more quickly than one-hot encod-
ing in the classification problem [HVD15]. The encoder maps an
image to colour distributions by searching the K-nearest neighbours
of bins weighted by a radial basis function (RBF) kernel. Noted that
the method [ZIE16] considers only single level soft-encoding and
it is just used for calculating the loss function. In our network, we
adopt the hierarchical soft-encoder to support our pyramid structure.
For example, we want to encode the colour distribution Zi from ref-
erence image Y i at ith level, the encoder is defined as follows:

Enci
(
Y i

h,w

) =

⎧⎪⎨
⎪⎩

RBF
(
Y i

h,w
,Zi

h,w,k

)
∑∣∣∣Ki

h,w

∣∣∣
k

RBF
(
Y i

h,w
,Zi

h,w,k

) , Zi
h,w,k ∈ Ki

0, else

⎫⎪⎬
⎪⎭, (4)

where Ki is the total number of nearest neighbours to Y i at the ith
level. The RBF is defined as follows:

RBF
(
Y i

h,w, Zi
h,w,k

) = exp

(
−‖Y i

h,w − Zi
h,w,k‖2

2σ 2

)
. (5)

In practice, we let σ = 5.

Inspired by the work [CK17], we reduce |Ki | gradually from F1

to F l instead of keeping it constantly. It is because while decreasing
the i, the resolution of I i will also decrease. The image I i will

be rougher with fewer details. Thus, we increase |Ki | in the lower
resolution to encourage a larger searching field in order to increase
the variation of colour distributions. At higher resolutions, images
contain more details which means the colour distributions should
be more accurate, and therefore we set |Ki | smaller. We find that
the hierarchical encoder not only performs well in the supervision
of multi-scale and extraction of reference features (Section 3.5),
but also encourages progressive aggregation while combining with
the decoder.

3.4.2. Decoder

Considering each level F i , decoder converts the classification result
Zi back to ab channels. We utilize softmax function to produce the
probability P (Zi

h,w) at each pixel as follows:

P
(
Zi

h,w

) = exp
(
Zi

h,w

)
∑|Q|

q=1 exp
(
Zi

h,w,q

) . (6)

The mean of the distribution in Q is calculated by the inner
product between the classified probability Zi

h,w of each pixel and
Q:

Deci
(
Zi

h,w

) = P
(
Zi

h,w

)� Q. (7)

3.4.3. Encoder–decoder assembling

The encoder maps the colour image to colour distributions, and
the decoder is the opposite. However, these two processes are not
reversible. That is because the hierarchical encoder utilizes soft-
encoding scheme, forming a sparse vector while sacrificing the
dense colour information. We assemble the hierarchical decoder
and encoder together as a filter in the progressive aggregation as
follows:

�(Zi) = Enci(Deci(Zi)). (8)

Instead of directly pass the colour distribution into the next net-
work branch, our HDEF first decodes colour distributions to colour
information then encodes it to dense features. This process is capa-
ble to avoid the error accumulation from all the preceding levels.
On the other hand, the dense output from Enci is helpful to exploit
the deep information as guidance for the next network branch.

3.5. Reference image features extraction

We extract the colour distributions from the reference image Y with-
out luminance channel L, and only ab channels are used to guide
the colourization. Due to the multi-scale nature of our network, the
reference image is also required to be downsampled several times
for each specific level. We transform the reference image into the
colour histogram by the encoder in Section 3.4.1. After that, deep
features of the statistical results are extracted by the PRDBs. Colour
distributions of the reference image at a specific resolution will be
passed into each network branch to guide the colourization process.
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During the training phase, we use the ground truth colour image as
the reference image to give the supervision of the network. While
in the testing phase, there is no limit for the reference image.

3.6. Implementation and training details

At each level F i , the first four convolution blocks extract shallow
features with a 3 × 3 size kernel, each of which keeps two normal
convolution layers followed by ReLU with the same feature chan-
nels. In the DEPN-trunk, the number of feature maps is doubled
while the resolution of the block is reduced. The convolution blocks
are followed by three PRDBs to explore local–global features. Af-
ter PRDBs, a single deconvolution layer is adopted to enlarge the
resolution with a 3 × 3 kernel, two stride and one padding side.
The specific number of feature maps in any block can be found in
Figure 2.

FromF i−1 toF i (i > 1), the resolution of input image is doubled.
We set 64 × 64 as the input resolution ofF1 and resize the resolution
progressively. In order to compare with the method [ZIE16], the
number of classification in Q is set as 313. For the dynamic |Ki | of
the hierarchical encoder, we use 20 for F1, 15 for F2 and 10 while
i > 2.

We train our network on the ADE20K [ZZP*17] data set using
the Adam solver [KB14] with a batch size of 5. The network was
trained with the learning rate of 3e−5. At the beginning, DEPN
is trained in F1 without aggregation from the preceding level. We
then fine-tuning F2 with the training parameters θ1 from F1 and
treat the result X̂1 as another input except for G and X. Well trained
parameters θ2 are capable to be applied in the larger scale level
while testing.

4. Experimental Results

We conducted extensive experiments to quantitatively and qualita-
tively evaluate the performance of the proposed DEPN. We collect
hundreds of images from the Internet with various resolutions and
types for evaluation. Since our network has no restriction on the
input image and reference image, we prepare a set of real colour im-
ages as well as randomly generated colour palettes as our reference
images. We first compare our method with state-of-the-art colour-
ization methods (Section 4.1). Then, we assess the robustness of
the proposed DEPN using various reference images, including ran-
domly generated colour palettes (Section 4.2). We further perform
three user studies to measure colourized results in terms of natu-
ralness, faithfulness to the reference and fidelity to the real image
(Section 4.3). A set of ablation studies are also performed to eval-
uate the effectiveness of key components of our DEPN, including
the proposed pyramid structure, PRDB and HDEF (Section 4.4).

4.1. Qualitative comparisons

First, we compare our results with four state-of-the-art deep
learning-based colourization methods, including two fully auto-
matic methods [ZIE16, LMS16] and two example-based meth-
ods [ZZI*17, HCL*18]. Since Zhang et al. [ZIE16] and Lars-
son et al. [LMS16] colourize image without any hint, only one

greyscale image is fed into their networks. Zhang et al. [ZZI*17],
He et al. [HCL*18] and our method have exactly the same input.
The objective is to obtain results with both good naturalness and
reference faithfulness.

Figure 1 shows the results generated by five different methods.
We can find some obvious colour drifting artefacts appear in re-
sults generated by Zhang et al. [ZIE16] in Figure 1(b). As can
be seen, results from Larsson et al. [LMS16] (Figure 1c) lack
colour variegation. In Figure 1(d), although the reference image
provides rich enough colours, blue colour in the sky still leak
onto the haystack in the first row. The result in the second row of
Figure 1(e) is dull, this is mainly because He et al. [HCL*18] relies
heavily on semantic matching (which fails for the colour palette).
Results show that our method generates the colourized images
(Figure 1f) with more vivid colours and less colour drifting artefacts.
The results reveal that pyramidal hierarchy features extracted by our
proposed DEPN are capable of producing more semantically correct
colours.

Figure 4 shows more results. Note that the networks [ZZI*17,
HCL*18] and ours are guided by real images while Zhang et al.
[ZIE16] and Larsson et al. [LMS16] have no reference image. As
can be seen, Zhang et al. [ZIE16] still cannot provide stable and
natural enough results. Such as the first row in Figure 4(b), the grass
is colourized in blue incorrectly and the colour drifting appears in
the sky. Larsson et al. [LMS16] in Figure 4(c) tends to generate
images with less vivid colours. The results from these two fully
automatic methods are unsatisfactory because they lack additional
hints. In Figure 4(d), Zhang et al. [ZZI*17] cannot suppress the
colour drifting artefacts even with a real image as their global hint
due to the lack of local hints in their method. He et al. [HCL*18]
fails to predict plausible colours in some local areas when there is
no semantic correspondence between the greyscale image and the
reference image. Especially in the first row of Figure 4(e), the colour
of the buildings and the grass looks not natural. On the contrary,
our network follows the colour distributions of the reference image,
and consider semantic correctness in the colourized image. Thus we
can handle semantically different reference and greyscale images.
Obviously, Figure 4(f) demonstrates that our colourization results
are much more natural and vivid than the results of the other four
methods. In addition, our results have the least artefacts.

We further compare with two traditional example-based methods,
Gupta et al. [GCR*12] (Figure 5c) and Welsh et al. [WAM02]
(Figure 5d), respectively. Figure 5(a) shows the reference images.
The major drawback of traditional example-based methods is that
the reference image has to be as similar as possible with the greyscale
image. Otherwise, colour drifting may appear, such as Figures 5(c)
and (d). Same issue also occurs in He et al. [HCL*18] in Figure 5(e)
since they also require the scene of the reference image and the
greyscale image are more or less the same. Our method (Figure 5f)
is able to generate faithful colour image even the reference and
greyscale image are not similar.

Figure 6 shows the results guided by randomly generated colour
palettes. Since there is no semantic correspondence between the
colour palette and the greyscale image, the results in Figure 6(c)
from He et al. [HCL*18] are unsatisfactory. We can find that even
with such sparse colour information, our method is still able to
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(a) (b) (c) (d) (e) (f)Greyscale

Figure 4: Results with real images as references. Zhang et al. [ZIE16] and Larsson et al. [LMS16] do not require any additional input. We
feed the same reference images into the networks [ZZI*17, HCL*18] and our network.

(a) (b) (c) (d) (e) (f)

Figure 5: Comparisons with example-based colourization methods. These are also the example images of our faithfulness user study.

(a) (b) (c) (f)Greyscale

Figure 6: Results with colour palettes as references.

generate more reasonable and vivid results than the net-
works [ZZI*17, HCL*18].

4.2. Results with various references

Figure 7 further shows some results of one greyscale with differ-
ent reference images. Figures 7(a) are the input greyscale images.
Figures 7(b–e) are our results guided by various images. We can
observe that our method can provide diverse and visually pleasant

results while keeping semantic correctness, especially for the arts.
In the last row of Figure 7, we can find that our method can generate
diverse styles of the trees from different colour schemes, just like
the scenes in different seasons. It reveals that our method can be
applied in colour transfer and even does not require the input image
to keep original chrominance values, which is simpler than existing
colour transfer methods [CFL*15, WZL*17].

4.3. User study

We further conduct three user studies using Amazon Mechanical
Turk, to evaluate the performance of our method with respect to
the naturalness, the faithfulness of reference and the fidelity of
our results against existing colourization methods [LMS16, ZIE16,
WAM02, GCR*12, ZZI*17, HCL*18]. The order of images in each
question is random. There were 20 participants joined our user
studies.

In the first user study, we evaluated the naturalness against the
state-of-the-art fully automatic colourization methods [ZIE16,
LMS16] and two example-based methods [ZZI*17, HCL*18]. For
the methods [ZIE16, LMS16], we randomly picked a greyscale
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(a) (b) (c) (d) (e)

Figure 7: The same greyscale image with various reference images. (a) Greyscale image. From (b) to (e) are the results generated guided by
different reference images. Reference images in first two rows are real images while last two rows are colour palettes.

ytilediFecnereferfossenlufhtiaFssenlarutaN(a) (b) (c)

Figure 8: Three user studies results. Each bar indicates the percentage of participants that voted for this method.

image from our collected data. With the same greyscale image,
we randomly assigned a reference image, which can be a real
image or colour palette, to the methods [ZZI*17, HCL*18] and
our method. This test contains 15 groups of results. Each group
consists of results from the approaches [ZIE16, LMS16, ZZI*17,
HCL*18] and ours, respectively. Results are in random sequence
without any text hint. For each group of results, participants were

asked one multiple choice question: Which image is more natural?
Figure 8(a) shows the first user study result. Each part indicates
the average number of participants that voted for this method. The
result reveals that the colour images generated by our method look
more natural than the existing state-of-the-art methods. Figure 9
demonstrates some selected results from user study. Note that,
we did not provide a greyscale image and reference image to the
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(a) Greyscale (b) [ZIE16] (c) [LMS16] (d) [ZZI∗17] (e) [HCL∗18] (f) Ours

Figure 9: Selected results of our naturalness user study. The results index that most participants voted from top to bottom is: (f), (f), (f), (d),
(f), (e), (e).

participants. The results that most participants voted are shown in
Figure 9.

The second one measures the results faithfulness to the refer-
ence images. We compared our results with the methods [GCR*12,
WAM02, ZZI*17, HCL*18]. Similar to the first user study, we ran-
domly picked a greyscale image and a reference image as input. The
whole test contained 16 groups of results. Each group consisted of
a reference image and four colourization results. Participants were
asked a multiple choice question for each group: Which image is
more faithful to the reference image? As can be seen in Figure 8(b),
our method shows outstanding performance against the other three
example-based colourization methods. Figure 5 shows a group of the
test in this user study. The result reveals that our proposed method
is able to precisely map the colour distribution while with more
semantically correct colourization results.

Lastly, we conducted a real versus fake test in the third user study
to evaluate the fidelity of recolourized images. In this experiment, we

compared our method with the methods [ZIE16, LMS16, ZZI*17,
HCL*18]. There are a total of four sessions in these experiments,
each session for one method. Each session consisted of 16 pairs
of images, a ground truth colour image and a recolourized image.
Users were requested to pick the real image they believed in a pair
of images. Participants were only allowed to finish at most one
session to avoid the impression of repeated ground truth images.
Figure 8(c) shows the user study of fidelity. As can be seen, among
these four methods, our method gets the most votes which mean
that our results are the most non-differentiable ‘fake’ images.

4.4. Ablation study

We set up a set of ablation studies to assess the effectiveness of
key components of the proposed DEPN. In these experiments, we
directly use the ground truth as the reference image to quantita-
tively evaluate the PSNR and SSIM [WBSS04] performances of net-
works with different configurations. Note that, for example-based
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Table 1: Quantitative evaluations on different resolutions with the ground
truth as the reference image. We compare our network against the work
[ZZI*17, HCL*18] and four variants of our network. All the networks run
on 1000 held-out test images, in the ADE20K [ZZP*17] validation data set.
Ours with PRDB (boldfaced values) achieves the best performance.

Method Resolution PSNR (dB) SSIM

[ZZI*17] 256*256 28.47 0.90
512*512 27.61 0.86

1024*1024 27.06 0.80
[HCL*18] 256*256 34.99 0.98

512*512 34.93 0.97
1024*1024 34.89 0.96

DEPN with conv 256*256 26.15 0.84
512*512 26.10 0.81

1024*1024 25.94 0.77
DEPN without HDEF 256*256 26.89 0.86

512*512 26.70 0.83
1024*1024 26.31 0.78

DEPN with Chained RDB 256*256 27.05 0.86
512*512 27.07 0.83

1024*1024 27.02 0.80
DEPN with static K = 10 256*256 27.39 0.87

512*512 27.30 0.85
1024*1024 25.44 0.72

Ours (with PRDB) 256*256 28.61 0.90
512*512 27.89 0.87

1024*1024 27.47 0.83

colourization methods, like ours and Zhang et al. [ZZI*17], the
ground truth itself is the ideal image to be compared with. Thus,
PSNR and SSIM results can be regarded as the faithfulness of results
comparing with their ground truth.

We train four variants of our network: (1) using common convolu-
tion blocks to replace our proposed PRDBs, (2) our network without
HDEF, (3) using chained RDBs to replace our proposed PRDBs and
(4) using static K = 10 defined in Section 3.4.1. We also compare
our results with those of the methods [ZZI*17, HCL*18]. Note
that the network [ZZI*17] is able to perform on the image with any
resolution due to the fully convolutional network design. All the net-
works run on 1000 held-out test images, in the ADE20K [ZZP*17]
validation data set.

Table 1 presents the peak-signal-to-noise ratio (PSNR) and struc-
tural similarity index (SSIM) results. Note that we only train the
first two levels of the network and then share the parameters to
the higher levels. As can be seen, we achieve higher performance
than Zhang et al. [ZZI*17] while keep increasing the resolution
of input image. The reason why He et al. [HCL*18] gets much
higher PSNR and SSIM than ours and Zhang et al. [ZZI*17] is that
when letting the ground truth be the reference image, the network
of [HCL*18] can easily finds out completely the same semantic cor-
respondence between the greyscale and reference images. Different
from He et al. [HCL*18], Zhang et al. [ZZI*17] and our method
only extract the colour distribution of the reference image without
any semantic information.

Comparing with four variants of our network, DEPN with PRDBs
outperforms DEPN with common convolution block and DEPN with
the chained RDB. It proves that our proposed PRDBs are able to

Table 2: Quantitative evaluation on the proposed DEPN with different lev-
els. We fix the input resolution to 512*512 for a better comparison. The
reference image is the ground truth itself. Four levels (boldfaced values)
achieve the best performance.

Number of levels Resolution PSNR (dB) SSIM

DEPN with single level 512*512 24.49 0.75
DEPN with two levels 512*512 27.01 0.84
DEPN with three levels 512*512 27.36 0.85
DEPN with four levels (Ours) 512*512 27.89 0.87
DEPN with five levels 512*512 27.87 0.86
DEPN with six levels 512*512 27.88 0.86

embed richer local–global context information than the other two
existing blocks, enhancing the semantic understanding of the colour-
ization process. The PSNR and SSIM results reveal that the HDEF is
indispensable to our network. Dynamic K (defined in Section 3.4.1)
is also proved more effective on our hierarchical network.

We conduct another experiment to further evaluate the effective-
ness of our pyramid structure. The training configurations are all the
same as previous. We train the network with various levels, single
level, two-level, three-level, four-level, five-level and six-level, re-
spectively. Table 2 demonstrates the PSNR and SSIM values under
different levels of our network. As can be seen, without pyramid
structure (DEPN with a single level in Table 2), PSNR and SSIM
value drastically decrease. While increasing the number of levels,
both PSNR and SSIM reveal better results. Note that the network
parameters are shared across levels 2 to 6 during both training and
testing, which reveals that the improvement is not because of the
increased number of parameters. Thus this experiment evidences
that the pyramid structure allows our network to learn more se-
mantically correct contextual information than a simple end-to-end
network. As shown in Table 2, there is no obvious breakthrough of
performance while increasing the level to 5 or even 6. To balance the
trade-off between performance and computational time, we choose
four levels for our network in practice.

Qualitative evaluation of our ablation study is shown in Figure 10.
The results without the proposed PRDBs are shown in Figure 10(a).
The problem of using convolution only is that it cannot capture
sufficient semantic information to understand the greyscale image,
and therefore leading to colour drifting artefacts (see the tree in the
first example) and murky colours. The proposed pyramid structure is
demonstrated in 10(b). Using a single level of image structure makes
the network concentrates to local regions. This is why the gener-
ated results contain inconsistent and incontinuous colours. The pro-
posed HDEF bridges different scales of information better, and thus
avoid inaccurate information transmission across different scales
of networks (see the building the first example, and the sky in the
second example of 10c). Finally, with all these components, the pro-
posed method achieves comparable results to the ground truth (10d
and e).

4.5. Performance

We construct our network using the deep learning framework Caffe
on Ubuntu 16.04. The whole training process took around 96 h on
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(a) (b) (c) (d) (e)

Figure 10: Qualitative comparisons of our ablation study. Here, we use ground truth as the reference image.

(a) (b)

Figure 11: One limitation is that our method cannot guarantee the
semantically colour correctness of same object between reference
image (a) and our result (b), like the first row. The last two rows are
unnatural results. They cannot be considered as good colourization
results because they contradict with human cognition.

a single NVIDIA GeForce GTX 1070 with an Intel Core i7-7700K
CPU at 4.20 GHz. It takes around 1.4 s for colourizing one image
(512*512) in average.

4.6. Limitations

Since our network only consider the colour distribution of the refer-
ence image. The network lacks semantic correspondence between

the reference image and the greyscale image. That is why we cannot
guarantee the semantically colour correctness of the same objects
from the reference image to the greyscale image, like the result in
the first row of Figure 11(b).

Similar to the other learning-based methods, another limitation
of our method is that the unusual colourization results when given
inappropriate references. It is hard to balance naturalness and ref-
erence faithfulness for example-based methods. When the colour
distribution of the reference image is not suitable for the specific
scene, our network may generate some results that contradict with
human cognition. For example, in the last two rows of Figure 11(b),
it is obvious that the skin of the woman and the feather of the eagle
are unusual.

5. Conclusion

In this paper, we propose a dense encoding pyramid network for im-
age colourization. We leverage large-scale data to encode the latent
colour information into our network. A reference image is utilized
to guide the colourization by analysing the colour distribution of it.
Due to the flexibility of our network, the reference image can be
any colour image even a simple colour palette. Our proposed PRDB
can effectively extract local–global colour context. The HDEF is
proposed to pass the colour distribution from lower level to higher
level. The network provides ab channels as the final output. Com-
bining with the given L channel, we can get the colourized image.
Experimental results show that our method is comparable and su-
perior to state-of-the-art methods both in visual pleasant and colour
varieties.
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