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PDBL: Improving Histopathological Tissue
Classification With Plug-and-Play Pyramidal

Deep-Broad Learning
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Abstract— Histopathological tissue classification is a
simpler way to achieve semantic segmentation for the
whole slide images, which can alleviate the requirement of
pixel-level dense annotations. Existing works mostly lever-
age the popular CNN classification backbones in computer
vision to achieve histopathological tissue classification.
In this paper, we propose a super lightweight plug-and-play
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module, named Pyramidal Deep-Broad Learning (PDBL),
for any well-trained classification backbone to improve the
classification performance without a re-training burden. For
each patch, we construct a multi-resolution image pyramid
to obtain the pyramidal contextual information. For each
level in the pyramid, we extract the multi-scale deep-broad
features by our proposed Deep-Broad block (DB-block).
We equip PDBL in three popular classification backbones,
ShuffLeNetV2, EfficientNetb0, and ResNet50 to evaluate the
effectiveness and efficiency of our proposed module on
two datasets (Kather Multiclass Dataset and the LC25000
Dataset). Experimental results demonstrate the proposed
PDBL can steadily improve the tissue-level classification
performance for any CNN backbones, especially for the
lightweight models when given a small among of training
samples (less than 10%). It greatly saves the computational
resources and annotation efforts. The source code is avail-
able at: https://github.com/linjiatai/PDBL.

Index Terms— Pyramidal deep-broad learning,
histopathological tissue classification, broad learning
system.

I. INTRODUCTION

H ISTOPATHOLOGICAL slides not only play a vital role
in cancer diagnosis, but also deliver valuable tumor

microenvironment information for cancer research [1], [2].
To analyze the whole slide images by computer algorithms
is crucial for precision medicine on cancers, such as diagnosis
prediction [3], [4], molecular status prediction [5], [6] and even
the origins of the unknown primary cancers prediction [7].
Segmenting and recognizing various tissue types is the very
first step of histopathological image analysis. Semantic seg-
mentation [8] is the best way to define tissue types for every
single pixel. However, due to the gigapixel resolution and
the expertise requirement, obtaining pixel-level annotations is
extremely difficult and time-consuming [9]. Therefore, patch-
level classification now becomes an alternative solution [10],
[11], which can greatly save the annotation efforts.

Convolutional neural network (CNN) has demonstrated out-
standing performance in image classification problem [12],
with a series of classification backbones, i.e., ResNet [13],
ShuffLeNet [14], EfficientNet [15] and etc. They have been
rapidly extended to medical image classification [16], [17],
including histopathological image classification [18], [19].
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Typically, Han et al. [20] presented a CNN-based multi-
classification model for histopathological tissue classification
of breast cancer, which achieves over 94% patch-level accu-
racy under four magnification factors. Tsai and Tao [21]
tested five common classification backbones on colorectal
tissue classification using 100,000 training image patches. All
the backbones can achieve over 95% accuracy. The above
researches proved that the current CNN classification back-
bones have already demonstrated strong feature representation
ability and achieved promising results for histopathology tissue
classification. In this paper, we reconsider how to make good
use of the features extracted from the existing CNN backbones,
to further improve the classification performance as well
as to increase the model generalizability, adaptability, and
robustness.

In clinical practice, pathologists read histopathological
slides by switching the object lens to observe the slides under
different magnifications. Therefore, considering multi-scale
contextual information is critical for histopathological image
analysis. Inspired by this observation, we propose a light-
weight plug-and-play module for any CNN classification back-
bones, named Pyramidal Deep-Broad Learning (PDBL). For
each input image, an image pyramid is constructed to extract
the pyramidal contextual information. For each level in the
pyramid, we propose a Deep-Broad block (DB-block) to fully
discover the multi-scale deep-broad features extracted by the
CNN backbones from low level to high level. Our proposed
PDBL can be plugged on any classification backbone and
effectively improve the classification performance with very
few extra computational resources.

We test PDBL on three representative CNN backbones,
ShuffLeNetV2, EfficientNetb0, and ResNet50 on Kather Mul-
ticlass Dataset [11] and Lung Colon Cancer Histopathological
Image Dataset [22]. We conduct two main experiments, one
is the effectiveness of PDBL with different proportions of the
training samples, the other is the robustness of PDBL with
only 1% training samples. Experimental results demonstrate
that PDBL effectively improves the classification performance
on both datasets. When very limited training samples are
involved (1% only), PDBL can maintain a standout improve-
ment compared with the baseline models without PDBL. It can
significantly reduce the annotation efforts and computational
resources. Experimental results also show that PDBL improves
domain adaptation abilities for CNN models. The contributions
of this paper are summarized as follows:

• We propose a lightweight plug-and-play module (PDBL),
which can be easily applied on almost any common
CNN-based classification backbone. It can generally
improve all the three CNN backbones in the experiment
for histopathological tissue classification with no re-
training burden.

• We propose a Deep-Broad block to fully discover the
multi-scale deep-broad features from low level to high
level.

• The proposed PDBL demonstrates outstanding improve-
ment of the performance for the lightweight models with
very limited training samples (1% only).

• Models with PDBL can relieve the requirement of
large-scale training data and be easily and efficiently
adapted to a new domain with only a few training
samples, which greatly saves the computational resources
and annotation efforts.

II. RELATED WORKS

A. Histopathological Image Classification

Automated analysis of whole slide images (WSIs) plays a
crucial role in computer-assisted tumor diagnosis [3], [23].
Due to the giga-pixel resolution, directly processing the entire
WSI is not feasible. Moreover, obtaining pixel-level annotation
is extremely difficult. Hence, histopathological tissue classifi-
cation has been widely employed as an alternative solution for
tissue semantic segmentation of WSIs [11].

With the development of CNN models, most of the
histopathological image classification models [24], [25] are
originated from the popular classification backbones from
the natural image classification. However, histopathologi-
cal image classification faces different challenges, such as
extremely large image resolution, deficiency of labels and
multi-scale information integration [26]. WSI-Net [27] model
was proposed to add an additional classification branch to
discard the normal tissue in order to save computational
resources. Raczkowski et al. [28] proposed a pathologist-
in-the-loop model to solve the insufficient labeling problem.
Xue et al. [10] proposed to synthesis histopathological patch
images using GAN to enhance the feature representation
and to improve the classification performance. Many studies
attempted to extract multi-scale features to better solve the
classification problem of histopathological images with end-to-
end deep learning models, such as the Deep-Hipo model [29]
and multi-resolution model [30]. Hatami et al. [31] proposed a
pluggable Deep Multi-Resolution Dictionary Learning (Deep
MRDL) based on the Deep Texture Encoding Network (Deep
TEN) [32] to utilize the multi-scale features from the CNN
backbone to improve the performance of baselines.

In this paper, we use a broad learning strategy to fully
discover the deep features extracted by deep learning mod-
els and leverage the multi-scale contextual information to
improve the performance of the CNN-based models without
excessive computational costs. Next, we will introduce some
common deep learning architectures and broad learning system
approaches.

B. Deep Learning Architectures

Deep learning models have already dominated the image
classification problem [33]. They usually go through sev-
eral stages to reduce the feature dimension and to extract
higher-level semantic features, defined in Eq. 1.

F = stage1 � stage2 � . . . � stage j (X), j = 1, 2, . . . , h.

(1)

where F denotes the CNN model and X is the input image.
Each stage is composed of a series of cascaded convolu-
tional blocks, such as Res-block [13], Efficient-block [15],
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Shuffle-block [34] and Inception-block [35]. These blocks
were designed to prevent the gradient vanishing problem and
to increase the capacity of CNN models by balancing the depth
and width of the deep architecture. Some skip connections
were also introduced to transmit the features between different
convolutional layers to avoid information loss and enhance the
feature representation.

The current CNN classification backbones have already had
strong capacity and feature representation ability. So in this
paper, we aim to discover the potential of the multi-scale
deep features extracted from different stages, and further
improve the performance of any well-trained CNN backbones
for histopathological tissue classification.

C. Broad Learning System

With the breakthrough of the GPU architectures over
the past decade, researchers have kept increasing the depth
of CNN models and achieved outstanding performance in
most of the computer vision and medical imaging tasks.
However, a deeper network will also increase the com-
putational time of the model training. Chen et al. [36]
proposed an opposite direction of neural network by expand-
ing the width instead of increasing the depth, called Broad
Learning system (BL). BL tends to breadth-wise expand
the feature space by multi-group feature mapping and uses
a shallow fully-connection layer to calculate output, which
greatly saves the computational resources compared with deep
learning (DL).

In the past years, a series of BL approaches [37]–[40]
have been proposed. The motivation of these approaches is
to provide an architecture to breadth-wisely combine multiple
groups of features by solving the following optimization
problems:

Wopt = arg min
Winit

� AWinit −Y �2
2 +γ � Winit �2

2 (2)

where Y , A represent target matrix (vector) and combined
feature matrix that concatenates with all groups of feature
nodes and enhance nodes. Winit and Wopt are pre-update and
post-update weights of output layer, which can be updated
rapidly by pseudo-inverse method:

Wopt = A+Y = lim
λ→0

(AAT + λE)−1 AT Y (3)

where E and λ represent an identity matrix and a constant
parameter. When λ = 0, the updating method is linear
regression which requires A to be a non-singular matrix. The
meaning of the above symbols can be found in Table. I.

In short, DL has a stronger semantic feature extraction
ability, while BL is faster and more lightweight. So in this
paper, we want to gather the strengths of both DL and BL
by using DL to extract multi-scale semantic features and
using BL for inference. Such deep-broad design is effective
and will not introduce an extra training burden. Considering
histopathological tissue classification, we design a pyramidal
structure for the deep-broad learning to consider the pyramidal
contextual information of the histopathological images.

TABLE I
SYMBOL ANNOTATIONS

III. PYRAMIDAL DEEP-BROAD LEARNING

Deep learning (DL) has the powerful feature extraction abil-
ity while Broad Learning (BL) is good at combining multiple
groups of features for fast inference. Theoretically, associating
DL with BL can effectively improve the performance of exist-
ing CNN-based models. In this section, we propose a novel
Pyramidal Deep-Broad Learning (PDBL) with a Deep-Broad
block (DB-block) for histopathological tissue classification.
Fig. 1 demonstrates the overview of the proposed PDBL.
We first construct an image pyramid for the input image. And
then we extract the multi-scale deep-broad features by DB-
block, shown in Fig. 2. Finally, a broad learning system is
introduced for the inference. The annotations in this article
are defined in Table I.

A. Image Pyramid Construction

Typically, pathologists observe pathological sections under
different magnifications. Inspired by this, we want the
CNN-based models to be able to consider the multi-scale
contextual information too. Given an input WSI patch I ,
we construct an image pyramid by downscaling the input
image for s times, defined as follows:

Xi = ξ(I, Si ), i = 1, . . . , s (4)

where ξ denotes the scale transformation of bilinear interpo-
lation with the scaling factor Si .

Now we have an image pyramid X with s sub-images,
including the input image X1 = I .

X = {X1, X2, . . . , Xs} (5)

And then, each sub-image is passed into our proposed
DB-block for feature extraction.

B. Multi-Scale Deep-Broad Feature Extraction via
Deep-Broad Block

We propose a Deep-Broad block (DB-block) to extract
features for the image pyramid X , as shown in Fig. 2. The
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Fig. 1. Overview of the proposed Pyramidal Deep-Broad Learning (PDBL). In PDBL, we create an image pyramid for each image in the training set
to obtain the pyramidal contextual information. For each image in the pyramid, we extract the multi-scale deep-broad features by a Deep-Broad block
(DB-block). Finally, histopathological image categories can be inferred by the broad learning system. For simplification, we only show the notations
of the left input image.

Fig. 2. Illustration of DB-block. Given any CNN backbone, intermediate
feature maps of each stage are compressed into channel-wise features
e by the adaptive global average pooling. Then we can obtain the multi-
scale deep-broad features z by concatenating e.

DB-block broadens the deep features from each stage of the
CNN backbone and forms the multi-scale deep-broad features.

For the sub-image Xi , we first extract its intermediate deep
features f from the last layer of each stage of the CNN
backbones. The intermediate deep features fk at the k-th stage
are squeezed into a channel-wise feature vector by adaptive
global average pooling in Eq. 6.

ek = 1

Hk × Wk

Hk∑
i=1

Wk∑
j=1

fk(i, j) (6)

where Hk and Wk represent the height and width of the
intermediate feature maps at the k-th stage.

The multi-scale deep-broad features zi of the sub-image Xi

can be obtained by concatenating all the channel-wise feature
vector e, as follows:

zi = e1 ⊕ e2⊕, . . . ,⊕eh (7)

where zi ∈ R
1×q , and q represents the dimensions of this

feature group, which is the summation of channel numbers of
all the stages. h denotes the number of stages of the CNN
backbone. ⊕ represents the concatenation operation.

Now for the image pyramid X = {X1, X2, . . . , Xs}, we can
obtain pyramidal deep-broad feature vector b with pyramidal
contextual information by concatenating all the multi-scale
deep-broad features z of the sub-images as follows:

b = z1 ⊕ z2⊕, . . . ,⊕zs (8)

where b ∈ R
1×p is the pyramidal deep-broad feature vector

of the image pyramid X . And p is the dimension of b where
p = s × q .

In DB-block, we extract the deep learning features by
the baseline model pre-trained with only training the CNN
backbone once using the original training set. And we extract
features of all the sub-images from the image pyramid by this
CNN backbone.

C. Broad Learning Inference

With the pyramidal deep-broad feature vector b of the
image pyramid X , we apply a broad learning system for
inference. Let us denote the complete training samples as
X = {Xi |i = 1, 2, . . . , n}, where n is the number of training
samples. We can obtain a set of feature vectors {bi |i =
1, 2, . . . , n}. Then a broad feature matrix B is constructed by
combining all the feature vectors bi in Eq. 9.

B = δ([bT
1 , bT

2 , . . . , bT
n ]T), B ∈ R

n×p (9)

where δ denotes the matrix normalization transformation.
In order to reduce the feature dimension and redundancy,

principal component analysis (PCA) is employed for B.
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We first calculate the covariance matrix C by Eq. 10:

C = 1

n
BTB, C ∈ R

p×p. (10)

Furthermore, dimension reduction matrix is obtained by SVD
algorithm:

[U,�, VT] = SV D(C). (11)

where U ∈ R
p×d , and d represents the target dimension in

dimensionality reduction.
According to U, the dimension of feature matrix B can be

reduced to the matrix A by Eq. 12:

A = BU, A ∈ R
n×d . (12)

Finally, the probabilities Y of all the categories can be
calculated by:

Y = AWPDBL, WPDBL ∈ R
d×c (13)

where WPDBL is the weights of PDBL, which can be calculated
by the pseudo-inverse algorithm. c denotes the number of
categories.

In the Training Phase: we use Atrain to represent the feature
matrix for the complete training set after PCA. According to
the ground truth labels Ytrain , the weights WPDBL of PDBL
can be calculated by the pseudo-inverse algorithm as follows:

WPDBL = A+
trainYtrain (14)

where A+
train can be calculated by:

A+
train = limλ→0(λE + AtrainAT

train)−1AT
train (15)

where λ and E represent a constant and unit matrix, respec-
tively. Since the pseudo-inverse algorithm only updates the
weights once, it greatly saves the computational resources.

In the Testing Phase: we can obtain the feature matrix Atest

by the same steps of the training phase. Then we can infer the
probabilities Ytest of tissue categories by:

Ytest = Atest WPDBL (16)

The final classification result is the tissue categories with
the largest probabilistic value.

Since the proposed PDBL is a plug-and-play module. It can
be applied to any CNN backbone and further improve the
classification performance.

D. Implementation and Training Details

In our experiments, all the CNN backbones are implemented
in PyTorch on a workstation with an NVIDIA RTX 2080Ti
and a dual-core Intel i5 CPU. The backbones are trained with
the cross-entropy loss and the SGD optimizer with a learning
rate of 1e−3, weight decay of 1e−4 and momentum of 0.9.
The batchsize is set to 20. Patches are resized into 224 ×
224 and normalized in both training and test phases. All the
CNN backbones in all the experiments in both datasets use
the same hyperparameter setting.

For our proposed PDBL, we create image pyramid under
three different resolution (112×112, 160×160 and 224×224).
The deep-broad features of the images of different scales are

Fig. 3. Kather Multiclass Dataset includes Adipose (ADI), back-
ground (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC),
smooth muscle (MUS), normal colon mucosa (NORM), cancer-
associated stroma (STR), colorectal adenocarcinoma epithelium (TUM).

all extracted from the network trained by the original image
size (224×224). And the target dimension d of PCA is decided
by the total number n of the training samples as follows:

b =
{

0.9 ∗ n, n <= 2000

2000, n > 2000
(17)

where n is the number of training samples.

IV. DATASETS

We evaluate our proposed PDBL in the following two
datasets Kather Multiclass Dataset [11] and LC25000
Dataset [22].

A. Kather Multiclass Dataset

Kather Multiclass Dataset is a multi-class colorectal dataset
composed of H&E stained histopathological tissue patches,
which was published by J. N. Kather.1 Kather Multiclass
Dataset is composed of two subsets. Kather et al. [11] manu-
ally delineated tissue regions in 86 colorectal (CRC) tissue
slides and they extracted 100, 000 H&E histopathological
tissue patches from these regions as Kather Multiclass Inter-
nal (KMI) subset at 20× magnification. They also extracted
an additional independent Kather Multiclass External (KME)
subset including 7180 H&E stained histopathological patches.
Histopathological images in Kather Multiclass Dataset are
cropped to a square size of 224 × 224 pixels from the whole
slide images (WSIs) at 20× magnification.

As shown in Fig. 3, each histopathological image belongs
to one category of tissues and there are 9 categories of
tissues in Kather Multiclass Dataset, including adipose (ADI),
background (BACK), debris (DEB), lymphocytes (LYM),
mucus (MUC), smooth muscle (MUS), normal colon mucosa
(NORM), cancer-associated stroma (STR), and colorectal ade-
nocarcinoma epithelium (TUM).

B. LC25000 Dataset

To advance computer-aided automated analysis of lung and
colon carcinomas, [22] released a lung and colon histopatho-
logical image dataset (LC25000 Dataset).2 In LC25000

1https://zenodo.org/record/1214456
2https://github.com/tampapath/lung_colon_image_set



6 IEEE TRANSACTIONS ON MEDICAL IMAGING

TABLE II
QUANTITATIVE COMPARISON (ACC) WITH DIFFERENT PROPORTIONS OF TRAINING SAMPLES IN KATHER DATASET (100% TRAINING SAMPLES:

100,000 PATCHES) AND LC25000 DATASET (100% TRAINING SAMPLES: 15,000 PATCHES)

Fig. 4. LC25000 Dataset has 5 classes which includes benign lung
tissues (LN), lung adenocarcinomas (LAC), lung squamous cell carci-
nomas (LSCC), benign colonic tissues (CN) and colon adenocarcino-
mas (CAC).

Dataset, histopathological images are cropped to a square
size of 768 × 768 pixels from H&E stain WSIs of lung
carcinoma and colon carcinoma. As shown in Fig. 4, LC25000
Dataset has 5 categories, including benign lung tissues (LN),
lung adenocarcinomas (LAC), lung squamous cell carcino-
mas (LSCC), benign colonic tissues (CN), and colon adeno-
carcinomas (CAC). LC25000 dataset is a balanced dataset that
each class has 5000 histopathological images.

V. EXPERIMENTAL RESULTS

In this section, we conduct several studies to evaluate
the proposed PDBL. In the following experiments, PDBL is
respectively plugged on three common classification archi-
tectures, including EfficientNet-b0 [15], ResNet50 [13] and
a lightweight model ShuffleNetV2 [34]. In Section V-A,
we evaluate the effectiveness of PDBL with different pro-
portions of training samples. In Section V-B, we test the
limit of the proposed PDBL by an extremely difficult task
by leveraging only 1% training samples to infer the rest of
them (99%). We further compare PDBL with two state-of-
the-art models in Section V-C. In Section V-D, we conduct
an ablation study to verify the effectiveness and the necessity

of the pyramidal design. Next, we demonstrate the advantages
of rapid domain adaptation on PDBL in Section V-E. Finally,
we also show the WSI-level semantic segmentation results by
stitching the patch-level classification results.

Accuracy and macro F1 score are used to evaluate
the patch-level classification performance of the proposed
PDBL in all the experiments. Due to the page limit,
in Table II and Table III, we only demonstrate the accuracy.
F1 scores can be found in the supplementary materials.

A. Effectiveness of PDBL With Different Proportions of
Training Samples

In this experiment, we evaluate the effectiveness and effi-
ciency of the proposed PDBL with different proportions of
the training set in both datasets. For Kather dataset, Kather
Multiclass Internal set (100k patches) and Kather Multiclass
External set (7k patches) are the complete training set and
test set. For LC25000 dataset, we let 60% and 40% samples
as the training set and the test set. And then, the training sets of
two datasets are randomly split into eight incremental subsets
with the proportions of [1%, 5%, 10%, 25%, 35%, 50%, 70%,
100%], respectively. We conduct this experiment by comparing
three baseline models for every CNN backbone. (1) Froze
the baseline models pre-trained on ImageNet and only update
the fully connected layers (FC), denoted as Baseline + FC*.
(2) PDBL directly plugged on the baseline models pre-trained
by ImageNet [12], denoted as Baseline+PDBL. (3) Baseline
models pre-trained by ImageNet fine-tuned for 50 epochs
without PDBL, denoted as Baseline*. (4) Baseline models
pre-trained by ImageNet fine-tuned for 50 epochs with PDBL,
denoted as Baseline*+PDBL. The above notations are used in
all the experiments.



LIN et al.: PDBL: IMPROVING HISTOPATHOLOGICAL TISSUE CLASSIFICATION 7

TABLE III
ROBUSTNESS OF PDBL IN AN EXTREME EXPERIMENT IN KATHER DATASET (TRAINING SET: 1,000 PATCHES; TEST SET: 99,000 PATCHES) AND

LC25000 DATASET (TRAINING SET: 250 PATCHES; TEST SET: 24,750 PATCHES)

Quantitative results for three CNN backbones on two
datasets are demonstrated in Table II. First, let us compare the
baseline models trained by different training set proportions
with and without PDBL (Baseline* and Baseline*+PDBL).
We can observe an overall improvement for nearly all the CNN
backbones when equipping with PDBL. With the increasing
training samples, the improvements became less significant
for three CNN backbones. It can be observed that the degree
of the improvements actually depends on three factors, the
complexity of the models, the difficulties of the datasets, and
the ratio of the training samples. For example, for the deeper
backbone with more parameters like ResNet50, the overall
improvement on a five-class dataset LC25000 is more obvious
than a nine-class dataset Kather. When there are enough train-
ing samples in LC25000, say 35%, ResNet50 with PDBL gets
only less than 0.001 improvement (0.99510→0.99550) but it
can bring 0.018 improvement (0.97310→0.99140) for a light-
weight backbone ShuffLeNetV2. It is because ResNet50 has a
stronger feature representation capability than ShuffLeNetV2,
which is a trade-off between computational resources and
performance. Despite this, the proposed PDBL is able to
steadily improve the classification performance for all the
CNN backbones.

Since the proposed PDBL is a model-agnostic plug-and-
play module, we are also curious about if semantic features
extracted from the backbones pre-trained with ImageNet can
be used to infer histopathology images. So we first froze the
backbones pre-trained on ImageNet and only updated the FC
layers (Baseline+FC*). Then we directly plug PDBL on the
same CNN backbones (Baseline+PDBL). For a lightweight
backbone ShuffLeNetV2, PDBL greatly outperforms updated
FC layers on both datasets, especially when fewer training

samples involve. Even in ResNet50 with 100% training sam-
ples, the accuracy of PDBL is still around 5% higher than
updated FC layers. The reason is that fully connected lay-
ers (Baseline+FC*) only consider high-level semantic features
from the last convolutional layer, but PDBL (Baseline+PDBL)
considers both high-level semantic features and low-level
texture information at each stage of the CNN backbone.

According to all the results and discussion above, we can
conclude that PDBL is a simple, general and effective module
for any CNN classification backbone on the histopathological
image classification task. When there are enough training
samples (more than 50%), training the CNN backbones alone
(Baseline*) is a reliable way but PDBL can help further
improve the performance. When training samples are limited
(less than 25%), PDBL becomes indispensable, especially for
the lightweight backbone. For extremely small training data,
PDBL provides an alternative solution that uses a well-trained
CNN model on ImageNet for feature extraction and to use
PDBL for inference. This solution does not need to re-train
the network and can greatly save computational resources and
annotation efforts.

Based on this experiment, we further discuss the robustness
of PDBL with an extremely small training set (only 1%) in
the next experiment.

B. Robustness of PDBL With Extreme Proportions of
Training and Test Sets

In the previous experiment, we observe a surprising out-
standing performance of PDBL with a small training set.
In this experiment, we conduct a cross-validation-like exper-
iment, but more difficult than cross-validation, to further
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discuss the robustness of the proposed PDBL. We randomly
sample 1% patches (1000 for Kather; 250 for LC25000) from
the training data and use the rest 99% patches (99000 for
Kather; 24750 for LC25000) of the training data for testing.
To alleviate the sampling bias, we repeat this experiment five
times. Each repetition is regarded as a fold in this experiment.
The baseline models in this experiment are totally the same
as the previous one.

The same observation with the previous experiment, only
updated FC layers (Baseline+FC*) is not a reliable method
when dealing with an extremely small training set. But it
does not mean the features extracted from the ImageNet
pre-trained backbones are not reliable. On the contrary,
when plugged PDBL on the ImageNet pre-trained backbones
(Baseline+PDBL), the performance comes back to a high
standard. Experimental results show that retraining the CNN
backbones (Baseline*) is still an option for ResNet50 but not
for lightweight models. Plugging PDBL on a retrained CNN
backbone (Baseline*+PDBL) is the optimal solution. It is
interesting that (Baseline+PDBL) performs slightly better than
(Baseline*+PDBL) with ShuffLeNetV2 on LC25000. The rea-
son might be that ShuffLeNetV2 fails to learn a stable model
with such limited training samples (only 50 patches for each
class). This extreme experiment demonstrates the potential
value of the proposed PDBL in reducing the annotation efforts.

C. Comparison With State-of-the-Art Methods

In this experiment, we compare our best model
ResNet50+PDBL with state-of-the-art methods including
Kather2019 [11] and Deep MSDL [31]. For Kather Multi-
class dataset, 70% KMI, 30% KMI and the entire KME are
used as the training, validation and test sets, respectively.
For the LC25000 dataset, we randomly divide the dataset
into training, validation and test sets by the proportion of
60%, 20% and 20%. Since both PDBL and Deep MSDL
are plugins, we use the same CNN backbone ResNet50 for
comparison. For the approaches without a released code,
we implement them strictly following the details in the
papers. We directly use the quantitative results reported in
the papers (if exist).

As shown in Table IV, ResNet50+PDBL achieves state-of-
the-art performance when dealing with the complete training
set on both datasets. When reducing the training samples to
only 1%, none of the SOTA models achieves over 0.90 accu-
racy, even on the easier dataset LC25000. Our proposed
PDBL achieves 0.931 for Kather Multiclass dataset, 0.961 for
LC25000 dataset. It is because PDBL combines low-level and
high-level features to provide more comprehensive features.
And the broad learning inference is easier to find a global
minimum than gradient descent when there are insufficient
training samples.

D. Ablation Study of Pyramidal Design

In this experiment, an ablation study is conducted to evalu-
ate the effectiveness of the pyramidal design of the proposed
PDBL. We keep the same experimental setting of Section V-B
by using 1% samples for training and 99% samples for testing

TABLE IV
COMPARISON (ACC) WITH SOTA METHODS ON KATHER MULTICLASS

DATASET AND LC25000 DATASET

TABLE V
ABLATION OF PYRAMIDAL DESIGN (ACCURACY)

TABLE VI
ABLATION OF PYRAMIDAL DESIGN (F1 SCORE)

five times. Here, we only show the mean and standard devi-
ation of the results. Note that +DBL and +PDBL represent
our method without and with the image pyramid, respectively.

Table V and Table VI demonstrate the accuracy and F1
score on both datasets with only 1% training samples. We can
observe a constantly stable improvement with pyramidal
design for all three backbones on both datasets. According
to the quantitative results, we find that the improvement of
pyramidal design is more significant on the lightweight model.
In Kather, PDBL can introduce around 0.09 improvement for
ShuffLeNetV2, 0.03 for EfficientNetb0 and only 0.0006 for
ResNet50 respectively. In fact, comparing ShuffLeNetV2 with
ResNet50, ResNet50 has the stronger capacity and feature
representation ability, which are great advantages when very
few training samples are involved.

In addition, the same finding is also verified in this exper-
iment that pyramidal design brings more improvement for
more difficult datasets. For Kather with 9 classes, pyramidal
design can introduce multi-level contextual features, which can
support the feature representation for more classes.

E. Domain Adaptation Study

Domain adaptation is a crucial ability for a neural network
model. In this experiment, we test if our proposed PDBL can
be easily adapted from the source domain to the target domain.
The same with Kather Multiclass Dataset, Zhao et al. [41]
also released a histopathological tissue classification dataset
for colorectal cancer with nine tissue types, which were
collected from four different centers, including TCGA, Kather,
Guangdong Provincial People’s Hospital and Yunnan Cancer
Center. We use the data from Guangdong Provincial People’s
Hospital (105k patches) as the target domain, which is divided
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TABLE VII
DOMAIN ADAPTATION FROM KATHER MULTICLASS DATASET TO ZHAO et al. [41]. * MEANS FINE-TUNING ENTIRE CNN MODELS/FULLY

CONNECTED (FC) LAYERS FOR ONE EPOCH. † MEANS UPDATING PDBL FOR ONCE

into a training set (63k patches) and a test set (42k patches) in
this experiment. Let CNN backbones with and without PDBL
be trained by the source domain (Kather), we first directly
apply them to the target domain [41]. Next, we fine-tune
the models with 100% (63k patches), 10% (6.3k patches)
and 1% (636 patches) of the training set from the target
domain, respectively. (1) The models trained on the source
domain Kather Dataset (100% KMI) are denoted as Baseline
and Baseline+PDBL in this study. (2) * represents fine-tuning
the entire CNN models or only updating FC layers for one
epoch. +PDBL† means updating PDBL by the training set of
the target domain. 1%, 10%, and 100% indicate the ratios of
training samples we used for fine-tuning CNN backbones and
updating PDBL.

Table VII demonstrates the quantitative results of the
domain adaptation study. When we directly apply base-
line models (with and without PDBL) trained by Kather
to Zhao et al. [41], the performance drastically decreases.
It means that there exists a domain shift between two datasets.
Then we fine-tune the models by 1%, 10%, and 100% training
samples respectively, with only one epoch fine-tuning of
baselines and weights updating of PDBL. Baseline*+PDBL†
comes back to relatively high performance with the complete
training set (100%). It is interesting that even we do not
re-train the backbones of baseline models, Baseline+PDBL†
can still obtain an outstanding performance by updating PDBL
for once with only 1% training samples (636 patches). But
Baseline+FC* achieves only a minor improvement by updat-
ing FC layers. This observation also supports our conclusion in
Section V-A that using a more stable baseline model for feature
extraction and PDBL for inference is a good solution when
training samples are limited. It greatly saves computational
resources and annotation efforts.

F. Timing Statistics

Table VIII demonstrates the timing statistics of updating
weights of PDBL versus training CNN backbones on Kather
Multiclass Dataset. The time of one epoch training of CNN
models is the average of 50 epochs training time. Since our
proposed PDBL only needs to calculate the weights once.

TABLE VIII
AVERAGE TRAINING TIME OF BASELINE MODELS AND PDBL ON

KATHER MULTICLASS DATASET (SECOND)

According to the timing statistics, the CNN backbones can
get a performance boost by only spending around one epoch
training time for the calculation of PDBL.

G. Semantic Segmentation for Whole Slide Images

The intention of patch-level tissue classification is to achieve
semantic segmentation for whole slide images. So in this
experiment, we show a colorectal WSI example of semantic
segmentation by our proposed method using the WSI from
the department of pathology, Guangdong Provincial People’s
Hospital. The model is Baseline*+PDBL of ResNet50 with
100% training set in this experiment.

Given a WSI in Fig. 5 (a), we first cut it into 224 ×
224 patches under 20× magnification with the resolution of
32868 × 39464 using sliding windows with the step size of
104 pixels. For the overlapping region, we decide the tissue
class by a voting strategy. As shown in Table IX, the smaller
the step size is, the more the semantic segmentation precision
will be, but the more inference time it will spend. We fill the
small holes of the predicted mask for better visualization with
a postprocessing step. Fig. 5 (b) demonstrates the predicted
semantic segmentation results. We overlay the result on the
whole slide image for better visualization in Fig. 5 (c).

H. Limitation

There exists one limitation of PDBL. When dealing with
large among of training samples, for example over 1 million
patches, PDBL is restricted by the performance bottleneck of
the hardware. Because we have to put all the patches into
PDBL to learn the parameters WPDBL. So the computational
tractability for the large dataset is the limitation of PDBL.
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Fig. 5. Semantic segmentation results of the colorectal WSI. The original colorectal WSI (a) is cut into 224 × 224 patches. After predicting the
class of each patch by PDBL, we tile all the patches together and form the semantic segmentation mask (b). (c) is the semantic segmentation result
overlaid on the original image.

TABLE IX
INFERENCE TIME CONSUMED AT DIFFERENT STEP SIZES OF SLIDING

WINDOW FOR SEMANTIC SEGMENTATION OF A WSI WITH

RESOLUTION OF 32868 × 39464

However, the major advantage of PDBL is fast adaptation
for the smaller dataset. And comprehensive experiments have
already demonstrated it. In addition, whether such a large
dataset is necessary is still a question since LC25000 with
25,000 patches has achieved 0.999 accuracy for five-class
classification (shown in Table II). Therefore, for tissue classi-
fication task, we believe PDBL is so far capable for most of
the scenarios.

VI. CONCLUSION

In this paper, we perform histopathological image classifi-
cation in a new perspective by reconsidering how to make
use of the deep features in order to further improve the
performance of existing CNN classification backbones. Thus,
we propose a lightweight plug-and-play module called Pyra-
midal Deep-Broad Learning for any CNN backbone without
a re-training burden.

We equip this plug-and-play module on three representative
CNN backbones and achieve a steady improvement of the
performance using different proportions of training samples.
Specifically, the proposed PDBL demonstrates good feature
representation capability and inference ability when very few
training samples are involved (less than 10%), especially for
the lightweight models. With PDBL, we even do not have to
re-train the baseline models. Such properties can greatly save
computational time and annotation efforts. We also look for-
ward to applying this plug-and-play module to more excellent

CNN backbones on the other datasets from different tumors
in the future.
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