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Exploring Duality in Visual Question-Driven Top-Down Saliency
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Abstract— Top-down, goal-driven visual saliency exerts a huge influ-
ence on the human visual system for performing visual tasks. Text
generations, like visual question answering (VQA) and visual question
generation (VQG), have intrinsic connections with top-down saliency,
which is usually involved in both VQA and VQG processes in an
unsupervised manner. However, it is shown that the regions that humans
choose to look at to answer questions are very different from the
unsupervised attention models. In this brief, we aim to explore the
intrinsic relationship between top-down saliency and text generations,
and to figure out whether an accurate saliency response benefits text
generation. To this end, we propose a dual supervised network with
dynamic parameter prediction. Dual-supervision explicitly exploits the
probabilistic correlation between the primal task top-down saliency
detection and the dual task text generation, while dynamic parameter
prediction encodes the given text (i.e., question or answer) into the fully
convolutional network. Extensive experiments show the proposed top-
down saliency method achieves the best correlation with human attention
among various baselines. In addition, the proposed model can be guided
by either questions or answers, and output the counterpart. Furthermore,
we show that combining human-like visual question-saliency improves the
performance of both answer and question generations.

Index Terms— Dual learning, saliency, visual question answer-
ing (VQA), visual question generation (VQG).

I. INTRODUCTION

Given a specific goal, humans have an excellent ability in rapidly
locating relevant regions of the image, known as top-down visual
attention. Various applications in computer vision, like image caption-
ing [1], [2] and visual question answering (VQA) [3]–[5], exploit the
mechanism of top-down saliency to focus on selective regions while
generating or understanding a description. The obtained saliency
maps usually explain the internal representations of the learned
convolutional neural networks (CNNs). Unlike image captioning,
the attention maps of VQA vary according to the given questions
in order to obtain correct answers. However, a recent study [6]
shows that the learned attentions look at different regions from
what humans do (see Fig. 1). In other words, existing unsupervised
models cannot simulate the process of question-driven top-down
visual attention. Traditional classification-based saliency methods
detect distinct object regions [7]–[9], but cannot be applied to textual
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information. On the other hand, whether an accurate saliency response
benefits VQA performance remains a question.

In this article, we aim to explore the intrinsic relationship between
top-down saliency and visual questions and find out how a human-like
saliency influences text generations. To this end, we introduce visual
question generation (VQG) [12], [13] into the saliency prediction
network. VQG aims to generate questions based on the image content.
This process requires additional information, typically an answer
[14], to confine the output space. Interestingly, we find that VQG
and text-driven top-down saliency can be modeled in a dual form,
i.e., the input and output of text-driven top-down saliency (a question
and a saliency map) can be the output and input of VQG. Dual tasks
can intrinsically complement each other. Therefore, learning one task
may help the other task and vice versa.

Therefore, we formulate text-driven top-down saliency as the
primal task and text generation as the dual task. These two tasks are
trained simultaneously in a dual supervised manner. Unlike multi-task
learning that shares the same representation of two tasks, we govern
the training process of two different networks by adding a regular-
ization term. This learning scheme exploits the structural relationship
between two tasks for effective learning. In order to encode visual
questions into a fully convolutional network, we involve a dynamic
parameter layer, where the weights of this layer are adaptively based
on the input text information. Extensive experiments demonstrate that
the proposed text-driven top-down saliency network outperforms the
state-of-the-art attention models and various baselines. In addition,
the proposed dual network is flexible, and we show that top-down
saliency can also be guided by visual question answers, leading to
more precise answers for the VQA network. Finally, we investigate
the saliency-driven VQG, and we demonstrate that saliency maps may
serve as additional information for the better question generation.

In summary, the contributions of this work are threefold.
1) We propose a dual supervised network with dynamic parameter

prediction, which demonstrates the effectiveness for top-down
saliency and text generation.

2) We delve into the learning interaction between text generations
and top-down saliency. In particular, we demonstrate a better
saliency map benefit both the VQA and VQG tasks.

3) We achieve state-of-the-art performances on three different
tasks, i.e., text-driven top-down saliency, VQA, and VQG.

II. RELATED WORK

Top-Down Saliency can be classified into weakly supervised and
supervised methods. Weakly supervised methods aim to discover the
saliency response during the prediction of CNNs [15], [16]. Besides
locating relevant objects in the task of image-level classification, it
interprets the internal relationship of the learned CNNs. Given a
target class, supervised methods simulate the process of visual search
with the supervision of object segments [17], [18]. Some methods
explored top-down saliency that is driven by different factors, e.g.,
exemplars [19] or keywords [20]. In this work, we extend the idea
to explore the understanding between top-down saliency and visual
questions.

Visual Question Answering and Generation are cross-discipline
tasks that require an understanding of texts and images. Image

2162-237X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3802-4644
https://orcid.org/0000-0002-9687-3900
https://orcid.org/0000-0002-2961-0860


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Humans look at different regions compared with unsupervised
attention (second and third examples) to answer questions. We propose to
predict top-down saliency guided by visual questions.

features are extracted by CNNs, while texts are handled by
recurrent networks. These two features are then concatenated
in different forms. An alternative [21] uses dynamic parameter
prediction to embed questions into the fully connected layer of
the classification network. We adopt this idea and integrate it
into the fully convolutional network for image processing tasks.
In order to extract the underlying relationship between questions
and images, VQA usually involves the top-down attention mech-
anism to highlight relevant regions of the questions [5], [10],
[11], [22]–[25]. These methods, however, are unsupervised atten-
tion models, and the obtained saliency maps are largely different
from human attention to answer the questions [6]. VQG, on the
other hand, attracts research attention since the first data set is
proposed by Mostafazadeh et al. [12]. Zhang et al. [13] pro-
pose to use region captions as guidance for generating questions.
Jain et al. [26] present a diverse VQG model by combining the
variational autoencoder and the long short term memory. Other
than visual question processing, Cornia et al. [27], [28] propose to
explicit predicting caption-driven saliency for image captioning, and
they show human-like saliency benefits the resulted image captions.
Different from existing works, our focus is on detecting visual
question saliency and exploring the duality between saliency and
questions.

Multi-Task and Dual Learning both can be used to train multi-
ple tasks jointly. Multi-task learning introduces multiple losses for
supervising all tasks. Although different strategies [29]–[31] are
proposed to integrate multiple losses, the target tasks are required
to share the same input space and representations. Differently, dual
learning aims to optimize the training process by levering the cycle
consistency. It can be used in two separated networks with invertible
input–output. He et al. [32] propose dual learning to machine
translation, where A-to-B and B-to-A translations can be intuitively
modeled in a closed loop. Li et al. [14] model VQG and VQA as
dual tasks, and they leverage Q-A dependences to regularize the
training process. Different from existing works, we make the first
attempt to explore the duality between top-down saliency and text
generation.

III. APPROACH

The pipeline of our proposed approach is shown in Fig. 2. Our
method consists of two components: a text-driven top-down saliency
network and a saliency-driven VQG network. The first component
takes an image and a question as input and yields a saliency map
that correlates with the question. The second component takes an
image and a saliency map as the input, and outputs an appropriate
question according to the salient regions. These two networks do
not share parameters, and they are trained simultaneously as dual
tasks. We will describe the two networks in Sections III-A and III-B,
respectively. Our dual learning strategy is presented in Section III-C

A. Text-Driven Top-Down Saliency Network

Given an input image I and a question q, our text-driven top-
down saliency network predicts the salient regions m that draw
human attention to answer question q. This network consists of two
subnetworks [Fig. 2 (left)]. The first subnetwork predicts a saliency
map based on the conv–deconv pipeline (i.e., fully convolutional
network [33]). The convolution part is based on ResNet-152 [34]
except the last classification layer, while the deconvolution part is set
as the mirror architecture of the first part.

The second subnetwork encodes the input question into textual
features using gated recurrent units (GRUs) [35]. Traditional VQA
and image captioning methods combine textual and visual features
by simply concatenating them, but it may not fully explore the
correlation between two sources of knowledge. We combine both
the types of information using a parameter-prediction layer.

1) Dynamic Parameter Prediction: The text-driven top-down
saliency problem is formulated as a binary classification problem,
and each predicted value of pixel mi in m is defined as

mi = p(c1|I, q; θ) (1)

where c1 indicates the class of salient regions. I and q denote
the input image and the question. θ denotes the parameters of the
network. Note that θ represents the parameters of both the saliency
network and the GRU cells. Once properly trained, θ is fixed for
any image and question. This prevents the trained network from
generalizing to different input images and questions. We introduce
the parameter prediction mechanism to (1)

mi = p(c1|I, q; θ, θd (q)) (2)

where θd (q) denotes the parameters of the added parameter predic-
tion layer. θd (q) is dynamically predicted according to the given
question q, and thus enables question-dependent textual knowledge
embedding.

Specifically, the parameter prediction layer is implemented as a
convolution layer and is inserted in the middle of the conv–deconv
pipeline. The output of the parameter-prediction layer with an input
feature map fs is

fo = Wd (q) ∗ fs + b (3)

where Wd (q) denotes the predicted matrix by the parameter predic-
tion network, ∗ is the convolution operator, and b is the bias. By doing
so, the saliency network is parameterized by the input question q.

Assume that the output embedding vector of GRU cells is V (q).
In order to predict Wd (q), we apply a fully connected layer to the
embedding vector

Ŵp(q) = WgV (q) (4)

where Wg denotes the parameters of this fully connected layer. Ŵp(q)

is a 1-D vector, which cannot be directly used in the parameter-
prediction layer. We first set the output length of the fully connected
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Fig. 2. Pipeline of our proposed method, which involves two tasks, top-down saliency detection, and VQG. The input–output of one task is the output/input
of the other; therefore, these two tasks are simultaneously trained using dual learning. Dynamic parameter prediction is used to embed visual questions into
the fully convolutional network.

layer to be the same as the depth of Wd (q). It is then repeated
spatially to match the size of Wd (q), and the final predicted matrix
is denoted as Wp(q). Equation (3) can be rewritten as

fo = Wp(q) ∗ fs + b. (5)

2) Backpropagation: The introduced parameter prediction layer
can be trained in an end-to-end manner using standard backprop-
agation. The derivative of the predicated parameters g(q) can be
computed as

∂�1

∂g(q)
= fs

∂�1

∂ fo
(6)

where �1 denotes the loss function of the top-down saliency task.

B. Saliency-Driven VQG Network

Given an image and a saliency map, the saliency-driven VQG
network predicts a question that corresponds to the salient regions.
It is set as a dual task in our framework, where the network design
is independent of the primal task. We use a simple architecture for
VQG [Fig. 2 (right)]. First, two images are fed to the ResNet-based
Siamese network [36] for extracting feature representations. Then,
two image features are concatenated together as the input for GRU
cells, and each unit outputs a word for predicting the question. Each
word of the question is generated as follows:

wt = arg max
ŵ∈W

p(ŵ|I, m, w0, . . . , wt−1) (7)

where wt denotes the word generated at step t and W denotes the
word vocabulary.

C. Dual Learning

The above two networks have interchangeable input–output.
Inspired by [14], [37], we formulate these two tasks in a dual form,
where the primal task learns to map a question q to a saliency map
m, and the dual task learns to map a saliency map m to a question q.
These mapping functions are equal to learning the joint probability
of p(m|q; θqm) (primal task) and p(q|m; θmq ) (dual task), where
θqm and θmq are the parameters of two networks, respectively. In
standard supervised learning, the parameters of these two networks

are learned by optimizing the following equations:

minθqm

(
1

n

)
�n

i=1�1
(
mi , mgt

i

)
(8)

minθmq

(
1

n

)
�n

i=1�2
(
qi , qgt

i

)
(9)

where n is the total number of training samples, mgt and qgt are
the ground truth, and �1 and �2 are the loss functions of two
tasks. Traditionally, these two tasks are trained independently and
separately, and thus cannot explore the bidirectional relationship
between two tasks. Here, the joint probability of two tasks p(q, m) is
used to define the duality, and ideally, two learned networks should
satisfy the following condition:

p(q, m) = p(q)p(m|q; θqm) = p(m)p(q|m; θmq ) (10)

where p(q) and p(m) denote the marginal distributions. This is a
necessary condition for the networks that are trained dually. It is
obvious that traditional learning strategies cannot guarantee the above
condition. To make (10) hold, we solve the following multi-objective
optimization problem:

obj. 1: minθqm

(
1

n

)
�n

i=1�1
(
mi , mgt

i

)

obj. 2: minθmq

(
1

n

)
�n

i=1�2
(
qi , qgt

i

)
(11)

s.t. p(q)p(m|q; θqm) = p(m)p(q|m; θmq ).

Equation (11) can be solved by introducing the Lagrange multi-
pliers [38]. First, the duality constraint in (11) can be converted into
a regularization term as follows:

�d =(log p(q)+log p(m|q, θqm)−log p(m)−log p(q|m; θmq ))2.

(12)

This regularization term is involved in the training process of dual
tasks with a weighted combination, and the two tasks can be trained
by minimizing the following objective functions:

minθqm

(
1

k

)
�k

j=1
[
�1

(
m j , mgt

j

)+λqm�d (q j , m j ; θqm , θmq )
]

(13)

minθmq

(
1

k

)
�k

j=1
[
�2

(
q j , qgt

j

) + λmq�d (q j , m j ; θqm , θmq )
]
(14)
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where k is the total number of training sample pairs of two tasks and
λ∗ indicates the regularization weight. In our experiment, we train
(15) by using an Adam optimizer [39].

In practice, it is usually impossible to obtain the ground-truth
marginal distributions of p(q) and p(m). We use empirical marginal
distributions instead. We use our pretrained GRU-based language
model [35] to generate the marginal distributions. An input question
q is modeled by GRU cells, and the marginal distribution of the i th
word qi in q is defined as

�
Eq
i=1 p(qi |q1, . . . , qi−1) (15)

where Eq denotes the total number of words in q. We use our
pretrained text-driven saliency network for modeling the saliency
distribution. For a saliency map m with T pixels, the saliency
distribution is defined as

�T
i=1 p(mi |m1, . . . , mi−1) (16)

where m is reshaped to a 1-D vector and mi is the i th saliency value.

D. Training the Networks

Our framework contains two base models, ResNet-152 [34] for
images and GRU [35] for questions. The primal and dual networks are
pretrained independently. For the purpose of visual feature extraction
in VQG, we directly used the pretrained model of ResNet-152 based
on ImageNet, and this part is fixed during the training of VQG. The
VQG subnetwork is pretrained on the VQG benchmark [12], while
the top-down saliency model is pretrained on the traditional saliency
benchmark [40]. Given different input questions, the distributions in
the parameter-prediction layer vary significantly, which may prevent
the saliency model from obtaining optimal results. We apply batch
normalization [41] in the parameter-prediction layer as well as all the
conv and deconv layers for regularizing the training process.

To enhance the textual embedding ability of GRU, we pretrain our
GRU on a book-collection corpus [42]. It contains more than 74M
sentences. This model is pretrained in an unsupervised fashion to pre-
dict surrounding sentences according to the embedding sentences. By
learning from a large number of sentences, generic textual knowledge
is embedded in the GRU model with richer representations.

IV. EXPERIMENTS

In this section, we compare the proposed method with various
baselines, explore whether answers can be used to generate saliency
maps, and evaluate our saliency-driven VQG model. The proposed
method is implemented using Pytorch and tested on a PC with
an i7 3.4-GHz CPU, an Nvidia Titan Pascal GPU, and a 32-GB
RAM. In our experiments, all the compared networks are trained
with the same amount of data (i.e., the same number of epochs).
The entire training procedure (including pretraining) takes about one
week before convergence.

A. Data Set and Evaluation Metrics

We evaluate the proposed top-down saliency method on the
VQT-HAT data set [6], which is the only data set containing both
visual questions and the corresponding saliency maps. In total, there
are 58 475 training and 1374 validation question-image pairs anno-
tated by 800 unique workers. For question generation and answering,
we evaluate our models on the VQA [3] and GNQ [12] benchmarks.

1) Saliency Metrics: We follow the VQT-HAT data set [6]
and evaluate the resulted saliency maps using rank correlation.
Normalized scanpath saliency (NSS) [43] metric is further used to
evaluate the distributions of saliency maps. For the rank-correlation
metric, saliency maps are first downsampled to 14 × 14. Each pixel

TABLE I

COMPARISONS WITH RESPECT TO MEAN RANK-CORRELATION AND
NSS (HIGHER IS BETTER). ERROR BAR IN RANK-CORRELATION

INDICATES THE STANDARD ERROR OF MEANS. THE PROPOSED

METHOD “OURS-Q” ACHIEVES COMPARABLE PERFORMANCE

WITH HUMAN ATTENTION AND OUTPERFORMS ALL UNSU-
PERVISED METHODS AND TRADITIONAL BOTTOM-UP

APPROACH IN BOTH THE METRICS

is ranked based on its spatial attention, which results in a ranked
list for each saliency map. It is then compared with the ground-
truth saliency map ranked list by computing their correlation. This
metric shows how the machine-generated saliency maps correlate
with human attention maps.

2) VQG Metrics: Similar to [26], we use the corpus-level bilin-
gual evaluation understudy (BLEU) and Metric for Evaluation of
Translation with Explicit ORdering (METEOR) scores to measure the
generated questions. BLEU is designed to measure the performance
of the task of machine translation, and it is a traditional metric that
achieved good correlation with human judgment. The METEOR score
is another popular machine translation metric that uses F-measure to
measure word matches.

3) VQA Metrics: The proposed method is flexible, and we can
replace questions by answers in our framework to see whether the
answers can be correctly predicted only by saliency maps. We use
top-1 accuracy (Acc1) and top-5 accuracy (Acc5) to measure the
predicted answers.

B. Text-Driven Top-Down Saliency Evaluations

1) Baselines: We evaluate the primal task by comparing with four
state-of-the-art attention-based VQA methods: SAN [10], HCA [11],
MFB [23], and MUTAN [24], and one classic saliency prediction
model [44]. HCA contains three levels of saliency maps (i.e., word,
phrase, and question), and we compare all of them. In addition, three
baselines are compared.

1) B1: Without Guidance: This baseline directly learns the image-
saliency mapping without question guidance using the same
saliency-detection network.

2) B2: Concatenated Features: This baseline concatenates the
embedded question features directly to the middle layer of the
conv–deconv pipeline.

3) B3: Independent Learning: This baseline trains the text-driven
top-down saliency network independently without involving the
VQG process.

All the three baselines are trained without dual learning, and they are
served for the ablation study of the proposed method.

2) Comparisons: Table I shows the mean rank-correlation and
NSS of the validation set on the VQA-HAT data set. The last row
“Human” indicates the interhuman agreement on the validation set for
reference, which are computed by the average rank-correlation and
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Fig. 3. Qualitative evaluations of the proposed methods on text-driven top-down saliency detection. Results show the proposed method predicts saliency
better than attention-based VQA methods as well as the traditional bottom-up approach.

NSS of three saliency maps generated by three users. All reported
results are the average values of these three saliency maps. Uniformly
weighted regions may lead to ranking variations, and we add random
noise (order of 10−14) to alleviate this problem.

As can be seen, four state-of-the-art attention-based methods show
minor correlations with human attention maps. In particular, MFB
[23] achieves the best correlations and NSS scores due to the
accurate localization of objects. MUTAN [24], on the other hand,
produces widely distributed saliency maps (see Fig. 3) that show
less correlations with human attention maps. Traditional saliency-
detection method [44] achieves higher correlation and NSS than
attention-based VQA models. The main reason is that it includes
center bias in the prediction model. Our first baseline B1 learns
to directly detect saliency without guidance, and it performs only
slightly better than [44]. This implies that unlike learning bottom-
up saliency, top-down saliency is ambiguous without the given task.
Our baseline B2 adds questions as guidance by simply concatenating
image and text features. The performance improves significantly
due to the introduced guidance. In B3, we replace the concate-
nated features by the proposed parameter-prediction layer, and it
leads to about 5% improvement. This indicates that the proposed
parameter-prediction layer provides richer question representations

TABLE II

QUESTION-GENERATION PERFORMANCE ON THE GNQ BENCHMARK [12].
GNQ [12] GENERATES QUESTIONS SOLELY BASED ON IMAGES,

WHILE GDQ [26] INVOLVES ANSWERS INTO THE PROCESS. OUR

MODEL CAN BE GUIDED BY SALIENCY MAPS AND ANSWERS.
BOTH THE SALIENCY GUIDANCE AND DUAL LEARNING

BOOST THE QUESTION-GENERATION PERFORMANCE

than simply concatenating text features. Finally, “Ours-Q” shows the
final results with dual learning. It shows mutually optimizing two
tasks helps detecting the salient object, and it is able to achieve
comparable result with human attention.
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Fig. 4. We show different applications of the proposed network: answer-driven top-down saliency detection, and saliency-driven answer prediction and
question generation. These demonstrate that the proposed dual model is flexible and can be used to model different invertible applications.

Figs. 1 and 3 show examples of the proposed top-down saliency
results. We can see that the proposed method is able to correctly
locate relevant regions to the questions. On the contrary, unsupervised
attention models may focus on wrong regions.

C. Questions Generation

The dual-task, saliency-driven question generation is also evalu-
ated. To have a fair comparison, we evaluate the proposed method on
the GNQ benchmark [12]. As a result, we use the entire VQA-HAT
data set for training in this comparison. We compare with the publicly
available models GNQ [12] and GDQ [26]. GNQ [12] generates
questions solely based on images, while GDQ [26] involves answers
into the process. We also use our model without dual learning as
a baseline. Three types of guidance, saliency, answer, and their
combination are used in our model. The corpus-level BLEU and
METEOR scores are shown in Table II. We can see that the proposed
models with saliency guidance outperform GNQ [12], which indicates

that additional guidance (in this case, saliency maps) would be useful
for question generation. In addition, we can see dual learning boosts
the generation performance and leads to more correct questions.
To verify whether the gained performance is due to additional
training or the proposed dual learning, we further train our networks
separately with multi-task learning. As can be seen, training with
additional saliency data cannot lead to better performance. Instead,
the VQG performance is slightly decreased, and it may be because
two tasks cannot build an inherent connection with simple multi-task
learning. GDQ [26] uses answers to generate their corresponding
questions, leading to significant improvement. Comparing with the
saliency map, using answer is less ambiguous and easy to predict
the correct question. Finally, we combine the answer and saliency
map together for guiding the question-generation process. Our model
outperforms the state-of-the-art VQG models, and using saliency map
provides complementary information to answer. Therefore, our model
is able to generate precise and appropriate questions with contextual
understanding.
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TABLE III

COMPARISON ON THE SALIENCY-DRIVEN ANSWERS PREDICTION ON THE
VQA VALIDATION SET [3]. FOUR STATE-OF-THE-ART METHODS ARE

GUIDED BY QUESTIONS, WHILE THE PROPOSED METHODS ARE

GUIDED BY SALIENCY MAPS. SURPRISINGLY, SALIENCY MAPS

CONTAIN SUFFICIENT INFORMATION TO PREDICT ANSWERS
WITHOUT KNOWING THE INPUT QUESTIONS. COM-

BINING THREE TYPES OF INFORMATION ACHIEVES

SUPERIOR PERFORMANCE

The last row of Fig. 4 shows two generated questions guided by
saliency maps. Based on the predicted saliency map, the first example
correctly predicts the question. For the second example, the ground-
truth question is “Which player is wearing number 2?” Given an input
saliency, which focuses on the left player of the image, the proposed
method is able to predict close question to the ground truth. This
ambiguous prediction problem can be addressed by using additional
answer information as the input.

D. Driven by Answers

Owing to our flexible structure, we can produce top-down saliency
maps driven by answers instead of questions, by simply replacing the
input–output questions to answer. In this experiment, we evaluate this
model on the validation set of the VQA data set [3]. Again, we train
our model on the entire VQA-HAT data set. However, the answers
“yes” or “no” are too uninformative to predict reasonable saliency
maps. We filter out images with these two answers for the VQA
data set. As the answers are modeled as classification options, we
simply convert the answers into a one-hot vector and concatenate to
the beginning of the fully convolutional network.

As the primal task, the rank-correlation result of this answer-driven
top-down saliency model on the filtered data set is shown in the third
last row (“Ours-A”) of Table I. Interestingly, although it is not as good
as driven by questions, it generates good saliency map compared with
others. The first two rows of Fig. 4 show two examples of our answer-
driven top-down saliency model. Given the answers “Grocery” and
“Laying down,” the proposed method is able to cover the relative
regions, which is similar to a visual search task.

The dual task of this model now becomes saliency-driven answer
prediction. Note that in this task, answers can be predicted with or
without questions. We show the prediction performance in Table III.
Again, we compare with four VQA models SAN [10], HCA [11],
MFB [23], and MUTAN [24] on the filtered VQA validation set. It
is obvious that questions contain richer information than saliency
maps, and thus, four VQA models obtain better accuracies than
using saliency only. However, it is still surprising that saliency map
can be used to predict answers and our method achieves reasonable
performance. The proposed dual learning is also effective in this

task, and achieves about 5% improvement than independent learning.
Similar to VQG, multi-task learning cannot boost performance in the
VQA task. We also report the results with image or question only.
These indicate that using images only cannot predict correct results,
while introducing saliency maps may bring hints of the corresponding
questions. The result of our model trained with image and question
also demonstrates the benefits of the proposed dual setting.

The third row of Fig. 4 shows two examples of the predicted
answers. It is not easy to accurately guess the question of this image,
and therefore difficult to accurately predict the answer without extra
information. In this case, the questions of the first image are: “Are the
deer afraid of the giraffe?” and “Which way is the giraffe facing?”
Our system predicts “Giraffe” according to the input saliency map,
which is not the correct answer for both questions. This demonstrates
that questions are still the most important information in VQA. In the
second example, the predicted salient region is highly correlated with
the question “What is flying in the sky?,” and our system predicts the
correct answer.

Finally, we train an additional VQA model with three types of
inputs: image, question, and text-driven saliency map. The input
image and the saliency map are concatenated, and the question is
encoded by the parameter-prediction layer [similar to Fig. 2 (left)].
As can be seen in Table III, the combined network performs superior
to the four state-of-the-art models. Unlike unsupervised models that
implicitly learn attention in the process, our model explicitly exploits
visual question (VQ)-saliency and it performs better, which implies
that learning human-like VQ-saliency benefits predicting correct
answers.

V. CONCLUSION

We present the first attempt to explore the relationship between
text generation and top-down saliency. It is formed as dual tasks
between top-down saliency and text generation. Specifically, we
propose a dual learning network that trains the primal task and the
dual task simultaneously, and it exploits the bidirection relationship
between two tasks. In order to encode textual information to the
fully convolutional network, we introduce the parameter-prediction
layer, where the parameters of the top-down saliency network are
adaptively determined by the input questions. Experiments show
that our top-down saliency method achieves similar performance to
human. Furthermore, we demonstrate an accurate saliency response
that benefits the generation of question and answer.
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