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Abstract Shape matching plays an important role
in various computer vision and graphics applications
such as shape retrieval, object detection, image editing,
image retrieval, etc. However, detecting shapes in
cluttered images is still quite challenging due to the
incomplete edges and changing perspective. In this
paper, we propose a novel approach that can efficiently
identify a queried shape in a cluttered image. The core
idea is to acquire the transformation from the queried
shape to the cluttered image by summarising all point-
to-point transformations between the queried shape
and the image. To do so, we adopt a point-based shape
descriptor, the pyramid of arc-length descriptor (PAD),
to identify point pairs between the queried shape and
the image having similar local shapes. We further
calculate the transformations between the identified
point pairs based on PAD. Finally, we summarise
all transformations in a 4D transformation histogram
and search for the main cluster. Our method can
handle both closed shapes and open curves, and is
resistant to partial occlusions. Experiments show that
our method can robustly detect shapes in images in
the presence of partial occlusions, fragile edges, and
cluttered backgrounds.

Keywords shape matching; shape detection;
transformation histogram

1 Introduction

Shape matching plays an important role in various
computer vision and graphics applications such as
shape retrieval, object detection, image editing,
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image retrieval, etc. Compared to gradient and
texture features, shape features are much more
reliable when objects are characterized by distinctive
shapes, such as road signs in images and videos. In
this paper, we focus on detecting shapes in cluttered
images by analyzing point-to-point transformations.

In the early days, methods were proposed to
measure shape similarity by transforming shapes
into other domains, using, e.g., wavelet-based
transforms [1] and Fourier transforms [2–4]. Methods
have also been proposed to transform shapes into the
curvature domain, using curvature inflection points
for shape matching [5, 6]. Later, various shape
descriptors were proposed and used for measuring
shape similarity. Shapes may also be described
using triangle areas, by forming a set of triangles
at a reference point [7]. Use has also been made
of an integral kernel to extract shape characteristics
within a region centered at a reference point [8, 9].
The state-of-the-art shape context shape descriptor
utilizes a log-polar diagram to statistically record
the spatial distribution of shapes at each sample
point [10].

However, most existing shape matching algorithms
or shape descriptors are only designed for matching
shapes with clean and clear edges. Unsatisfactory
results may be obtained if they are used to detect
shapes in cluttered images. First of all, edges in
cluttered images are fragile edges: shapes may be
cut into fragments (blue box in Fig. 1(b)). With no
tolerance for fragile edges, whole-shape descriptors
naturally fail to detect shapes with fragile edges.
Furthermore, region-based shape descriptors are also
unable to extract features from fragile edges since
they assume that shapes are closed. Secondly, partial
occlusions (yellow box in Fig. 1(b)) typically occur,
again hindering whole-shape descriptors from finding
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Fig. 1 Challenges in shape detection in cluttered images. (a) Input
image. (b) Edge map of (a). (c) PAD with distance field. (d) Our
result.

the correct solution. Lastly, the background in
cluttered images may be extremely noisy (red box in
Fig. 1(b)). Noise greatly affects shape descriptors in
the spatial domain. Moreover, cluttered backgrounds
also increase computational costs.

The inner-distance shape context [11] extended
the original shape context to tackle partial-shape
matching, but it still requires the shapes to be
closed. Recently, Kwan et al. [12] proposed a
point-based shape descriptor called the pyramid
of arc-length descriptor (PAD) to tackle partial
occlusion, and their method is also applicable to open
curves. However, their method is greatly affected
by cluttered backgrounds since they rely on distance
fields for final shape matching. Moreover, it is
computationally expensive.

In this paper, we present an efficient shape
detection method tailored for shape detection in
cluttered images. We found that, while shape
detection can be regarded as finding the optimal
transformation from a queried shape to the shape
in the image, we may first identify the optimal
transformation for each point on the shape and then
summarise all transformations to get the optimal
transformation for the whole shape. In order
to find the optimal transformation for each point
efficiently, we adopt PAD [12] as the shape descriptor
for each point and find the optimal corresponding
point in the image by comparing similarity of

PAD. We use PAD because of its scale, rotational,
and translational invariance. Furthermore, PAD is
applicable to both closed and open curves, and is
robust to partial occlusion. We then calculate the
transformation between corresponding points based
on PAD (Fig. 5), and form a 4D transformation
histogram to summarise the transformations of
all points on the shape. The main cluster of
transformations is the detected result. Figure 1(c)
shows the result detected by directly applying PAD,
while Fig. 1(d) shows the result detected by our
method. It can be seen that our method is more
robust to noise and therefore more appropriate for
detecting shapes in cluttered images. We later
provide the results of two experiments to validate
the robustness of our method to partial occlusion
and cluttered backgrounds.

Our contributions can be summarized as follows:
• an efficient shape detection method for detecting

shapes in cluttered images;
• which is well able to simultaneously handle

fragile edges, partial occlusion, and cluttered
backgrounds.

2 Related work

Detecting shapes in images is a fundamental problem
in computer vision and graphics. Over the past few
decades, various two-dimensional shape descriptors
have been proposed to describe the characteristics
of a shape. They can be broadly classified into
two categories: global shape descriptors, which
describe the characteristics of the whole shape, and
local shape descriptors, which describe the local
characteristics of a shape at specific points.
2.1 Global shape descriptors

A popular family of global shape descriptors
performs domain transform on the shape. Fourier
descriptors [2–4] can be used as shape signatures that
capture shape characteristics (e.g., centroid distance
and cumulative angles along the shape boundary)
in the Fourier domain. Wavelet descriptors [13]
rely on wavelet transforms to obtain a multi-
resolution representation of a shape from the shape
boundary. Radon descriptors [14] rely on R-
transforms, a variant of Radon transforms, of the
shape to obtain the shape properties. Curvature
scale space (CSS) [5, 6] describes a shape by
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recording its inflection points at different level of
smoothing. It represents the changes in location
of inflection points on the shape boundary with
smoothing. Later, Lee et al. [15] proposed shape
signature harmonic embedding (SSHE), which uses
discrete harmonic functions to replace smoothing
in the construction. Descriptors have also been
proposed based on moment theory, including Hu
moments [16], Zernike moments [17], and image
moments [18, 19]. Bernier and Landry [20] proposed
a polar representation that plots the orientation of
each boundary point referenced from the centroid of
the shape as a description.

However, all of the above global shape descriptors
describe shapes in an integral manner. They do
not extract any local detail of the shape. Thus, we
cannot directly use these global shape descriptors to
measure shape similarity for open curves or complex
shapes. Furthermore, global shape descriptors may
also fail when partial occlusions exist.

2.2 Local shape descriptors

Local shape descriptors are generally point-based,
describing local shape characteristics at reference
points. One descriptor is built for each reference
point, and all descriptors together form a rich
description of the whole shape.

Shape context [10] is the state-of-the-art point-
based shape descriptor. It describes the shape
distribution of boundary points by a log-polar
diagram centered at a reference point. Mori et
al. [21–23] introduced fast pruning to speed up
the matching process for shape contexts. Inner
distance shape contexts [11] are an extension
of shape contexts which use inner distance
instead of traditional Euclidean distance in length
measurement. However, shapes need to be closed to
measure inner distances. Furthermore, all methods
based on shape contexts are error-prone when used
to detect shapes in cluttered images since shape
contexts describe shapes in raster space.

Tănase et al. [24, 25] proposed use of a
turning function that measures the turning angle
along the boundary of the shape. Triangle area
representation (TAR) [7] describes the shape of a
reference point by the areas of triangles starting
from this point. Integral invariants [8] describe the
shape of a reference point using the integral kernel
within a region centered at this point. Hong and

Soatto [9] further proposed a multi-scale integral
invariant approach.

Although these point-based shape descriptors
describe local shape characteristics, global
normalization is still needed to achieve scale
invariance, as they are not inherently scale invariant.
These point-based descriptors cannot be directly
applied to detecting shapes in cluttered images.

Recently, Kwan et al. [12] proposed a locally
scale-invariant shape descriptor, the pyramid of arc-
length descriptor (PAD). The locally scale-invariant
property enables more robust detection of shapes in
the presence of cluttered edges and noise. However,
PAD only represents a very limited range of local
shapes at a reference point, so further evaluation
is needed for shape matching. While Kwan et al.
used a distance field for this purpose, the resulting
ability to detect shapes in cluttered images is poor,
since distance fields are quite sensitive to noise in
raster images. Instead, we adopt a transformation
histogram for shape matching, making our method
much more robust to noise.

2.3 Shape-based object detection

Various methods have been proposed to detect
objects in 2D or 3D space [26, 27]. Here, we only
focus on object detection in 2D, i.e., images. Most
existing methods are based on shape context [10]
since it is the state-of-the-art shape descriptor.
In particular, Lian et al. [28] proposed to detect
shapes with a novel outlier-resistant shape context
distance that ignores outliers in norm-2 distance
in the original shape context. Thayanathan et
al. [29] introduced a continuity constraint into shape
context matching, restricting the correspondence
to be formed by nearby points. However, these
methods cannot achieve scale invariance and are only
applicable to detecting shapes at the same scale.

Riemenschneider et al. [30] proposed a partial-
shape matching method to locate objects. However,
their method is not truly scale invariant. Shape
bands [31] can tolerate shape deformation to
some extent, within a fixed bandwidth. But this
method is also not scale invariant and is error-
prone in the presence of cluttered edges. Cheng et
al. [32] proposed to use a boundary band map to
search for repeated elements with similar shapes,
but user interaction is needed. The chordiogram
method [33] works by first forming a set of chord



4 C. Han, X. Liu, L. T. Sinn, et al.

by joining boundary points together, and then
uses lengths, orientations, and normal directions
of the boundary points forming the chords to
form a chordiogram for shape matching. However,
this method is not scale invariant and rotational
invariant. Chi and Leung [34] proposed to decompose
a shape into primitives and perform partial-
shape matching by searching an indexed structure
of primitives. However, they do not take scale
invariance into consideration. In contrast, our
approach achieves scale invariance and rotational
invariance; only a single description is needed to
describe the local shape in a scale-invariant and
rotational-invariant manner.

Methods based on neural networks have also been
proposed to detect objects [35–37]. While neural
networks may achieve better results than traditional
low-level methods, they rely highly on training data.
In this paper, we aim to detect shapes in cluttered
images by only relying on the shapes’ characteristics.

3 System overview

In this paper, we propose a novel shape
detection method which calculates and analyzes
a transformation histogram relating the queried
shape to the cluttered image. Figure 2 shows
the framework of our method. Given a cluttered
input image and a queried shape, we first extract
the edges from both the image and the queried
shape. To extract edges from the cluttered image,
we use the Canny edge detector [38]. For the
queried shape, we simply identify all boundary
pixels as edges of the shape. We then calculate
the local shape feature of each each point using an
existing point-based shape descriptor, the pyramid
of arc-length descriptor (PAD) [12]. Note that PAD
can be computed for all points no matter whether
they are on closed or open curves. Moreover, PAD

only describes local shape features along a single
edge. No redundant or disturbed information from
the cluttered background is embedded in PAD. In
addition, it is scale invariant, rotational invariant,
and translational invariant, allowing the detection
of shapes with changes in size and orientation.

The next step is to find all pairs of edge points with
similar PAD features (see Section 4.1). We observe
that there is a high probability that the points will
be correctly matched, and the transformations for all
correctly matched point pairs should be quite similar
(Fig. 6). Thus, we first calculate the transformation
for each pair of edge points in correspondence
(see Section 4.2), and then form a transformation
histogram using all transformations, to identify the
main cluster that represents the transformation of
the whole shape (see Section 4.3).

Our method is fully parallelisable for use on a
GPU.

4 Shape detection in cluttered images

4.1 Point-to-point matching via PAD

Given the edge maps from an image and a
query shape, we first extract the shape features
of all reference points on the edges by a local
point-based shape descriptor, pyramid of arc-
length descriptor (PAD) [12]. The features extracted
from PAD is locally scale invariant, rotational
invariant, and translational invariant. It can provide
the precise transformation of two points with
similar local shapes, which perfectly matches
our requirement. But we still want to point
out that our framework actually can accept all
local shape descriptors that provide point-to-point
transformations.

For the completeness of the paper, we briefly
introduce PAD and how it is used for local shape
matching between two reference points in the

Fig. 2 Framework of our approach.
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following. The PAD shape feature is extracted from
the integral of absolute curvature (IAC) [39]. Given
a curve (Fig. 3), the integral of absolute curvature
τ over a curve segment between points s and t is
defined as

τ (s : t) =
∫ t

s
|κ (x)| dx (1)

where κ (x) is the curvature at point x on the curve.
PAD encodes the shape by combining the IAC

domain and the arc-length domain. It constructs a
pyramid of arc-length intervals centered at a point p,
such that each interval corresponds to a fixed integral
value of absolute curvature (2iΔτ), cumulated from
p. The pyramid of arc-length Li and Ri can be
extracted by integrating different levels of absolute
curvature in the IAC domain. For level i, the two
intervals (li : p) and (p : ri) have the same IAC value
2iΔτ , so

τ (li : p) = τ (p : ri) = 2iΔτ (2)
After cumulating arc-length on both left and right

hand sides at different levels, the PAD vector is
defined by using this set of arc-length values. The
corresponding arc-lengths of these IAC intervals
form the initial PAD vector Minit. Figure 4 shows
the set of intervals sampled for 5 levels and the IAC
value accumulated for intervals from each level.

Minit (p) =
[

Ln−1 Ln−2 · · · L0

R0 R1 · · · Rn−1

]T

(3)

Normalization is performed to achieve scale
invariance:

Mn (p) =

⎡
⎣

Ln−1

2n−1Ln−1

Ln−2

2n−2Ln−1
· · · L0

20Ln−1
R0

20Rn−1

R1

21Rn−1
· · · Rn−1

2n−1Rn−1

⎤
⎦

T

(4)
The final PAD vector m(p) is defined as

m(p) = s

[
l̂n−2 l̂n−3 · · · l̂0
r̂0 r̂1 · · · r̂n−2

]T

(5)

where l̂i =
Li

2iLn−1
, r̂i =

Ri

2iRn−1
, and s ∈ {+1, −1} .

Fig. 3 An interval on a curve.

Fig. 4 Intervals sampled with multiple levels of PAD.

Here, s ∈ {+1, −1} is the sign of curvature at
p, indicating whether the curve is convex (+1) or
concave (−1) near the point of interest.

The PAD distance (similarity) between two local
shapes around two points p and q is denoted Dp,q,
and is the l∞-norm distance of the difference of two
PAD vectors:

Dp,q = ‖m (p) − m (q) ‖∞ (6)
We can now estimate the local shape similarity

of two points using the defined PAD similarity. We
find all point pairs (one on the queried shape and the
other on the image) with PAD distance larger than
or equal to K = 0.2 and denote these point pairs as
matching pairs. We may increase K to enforce the
matching pairs to have more similar local shapes, but
with reduced tolerance for shape deformations.

4.2 Transformation of matching pairs

We define the transformation between two points,
and thus two local shapes, to be a 2D transformation
comprising scaling, rotation, and translation along
x- and y-axes. For example, Fig. 5 shows a queried
shape Q (left) and an edge map E (right) with
an identified matching pair pi ∈ Q and qj ∈ E.
We build a vector (red arrows in Fig. 5) of the
endpoints of the last level coverage of PAD for points
pi and qi. The relative magnitude of the two vectors
indicates the change in scale spi,qj between the
two shapes under the PAD coverage. The angular
difference of the two vectors indicates the change
in orientation θpi,qj

of the two shapes locally. The
translation between the two points (xpi,qj , ypi,qj ) can
be computed as the spatial distance between the two
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Fig. 5 Vector formed by last level PAD coverage.

vectors. Then we can write the transformation Ti,j

as
Ti,j = [si,j , θi,j , xi,j , yi,j ] (7)

where i and j are indices of points on the queried
shape Q and the edge map of the cluttered image E

respectively.
Note that the transformation model used here

first translates the queried shape to the position
defined by the vector, and then scales and rotates
the queried shape correspondingly. Translation is
referenced to the centroid of the shape in order to
avoid deviations in position of the matching pair.
This avoids translations being affected by the scaling
and rotation components.

4.3 Transformation histogram

We now obtain a set of transformations T = {Ti,j}
for all matching pairs. All these transformations
hint at possible locations of the queried shape in the
cluttered image. It can be easily observed from Fig. 6
that matching pairs between two similar shapes
should have similar transformations. Based on this
observation, we use a transformation histogram to
cluster the transformations.

Before putting these transformations into the
histogram, we first normalize each component for
better comparison. Given the original scale si,j for
a transformation Ti,j , we assume the scale of the
queried shape cannot be larger than the size of the
cluttered image. Therefore, we normalize the scale
by the diagonal of the cluttered image. We only
take the normalized scale s

′
i,j ∈ [0, 1] as an effective

transformation and discard all transformations with
normalized scale larger than 1. For orientation,

Fig. 6 Matching pairs along similar boundary portions. Each
differently colored point is a PAD point involved in a different
matching pair. Dashed lines show correspondences between matching
PAD points.

we simply normalize it by the maximum possible
rotation, i.e., π. The range of the normalized
rotation θ

′
i,j is thus [−1, +1). We also normalize the

x-translation xi,j and the y-translation yi,j by the
width and height of the cluttered image respectively.
Any normalized translation components x

′
i,j and

y
′
i,j outside the range [0, 1] are taken as unsuitable

transformations and discarded.
Each matching pair contributes a score to its

corresponding histogram bin. We define the score
to be

si,j =
κ(i)κ(j)

1 + D(i, j)
(8)

where D(i, j) is the PAD distance of i and j, and
κ denotes curvature. The aim is to consider local
similarity and local smoothness for each matching
pair (i, j). We want locally more similar matching
pairs to contribute higher scores. Since a smaller
PAD distance means shapes are more similar, we
thus put D(i, j) in the denominator. We further
weight the score by local smoothness of the matching
pair (i, j), as smoother edges deliver less shape
information and are more likely to be matched
with other smooth edges. On the contrary, more
rapidly changing edges contain more information.
Figure 7 shows examples of matching two smooth
edge segments and two more rapidly changing edge
segments. Dashed lines indicate pairs of points
which are locally similar and form a matching
pair. We can easily observe that each point in
Fig. 7(a) matches several locally similar points in
Fig. 7(b). In contrast, the indicated point in
Fig. 7(c) only matches one point in Fig. 7(d).
Without consideration of local smoothness, the
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Fig. 7 Locally similar matching pairs with similar transformations.
(a) and (b) are two smoother edges. (c) and (d) are two more rapidly
changing edges. Dashed lines join locally similar pointers. Smoother
edges have many more correspondences than more rapidly changing
edges.

transformation histogram will be dominated by
matching pairs of smooth points. We overcome this
issue by weighting scores of matching pairs by their
curvatures, κ(i) and κ(j).

For each bin n corresponding to a certain
transformation range [Tn, Tn+1), the final score Sn is
the sum of scores of all matching pairs for that bin:

Sn =
∑
i,j

si,j , Ti,j ⊆ [Tn, Tn+1) (9)

In practice, we set the numbers of bins for
scale, rotation, and x- and y-translations to
{10, 10, 50, 50}. By finding the bin with the largest
score in the histogram, we can find the target
shape in the image. Since it is possible that no
similar shape exists in the cluttered image, we set a
threshold on the fraction of the points for a match to
exist. If the fraction is too low (empirically < 30%),
we conclude that there is no similar shape in the
image and return no match.

5 Experiments

In this section, we describe several experiments
conducted to evaluate our shape detection method.
Firstly we show some results of detecting shapes
in cluttered images. Note that all results are
directly plotted onto edge maps to aid visualization.
We conduct two further experiments to validate
the robustness to occlusion and cluttered edges
respectively.

In these experiments, we compare our method
to 6 existing shape matching methods, including
PAD using a distance field [12], shape contexts [10],
inner-distance shape contexts [11], curvature scale
space [6], triangle area representation [7], and

integral invariants [8], abbreviated as PAD-DF, SC,
IDSC, CSS, TAR, and II, respectively.

5.1 Shape detection in cluttered image

First we show a few results to demonstrate the ability
of our method to detect shapes in cluttered images.

Figure 8(a) shows a real life photo containing
a swan in the background. Since most existing
shape descriptors cannot support open curves, we
only compare our method with PAD-DF [12] and
IDSC [11]. IDSC fails to detect the swan as
inner distance is not defined for points across the
disjoint components (see Fig. 8(b)). PAD-DF fails
to locate the swan as it is confused by the clutter
(see Fig. 8(c)). Our method successfully finds the
location of the swan in the image (see Fig. 8(d)).
Since it is unfair to compare IDSC in such cases, in
the next two results, we only compare our method
with PAD-DF.

Figure 9(a) shows an image from an object
detection dataset, the ETHZ shape dataset [40]. The
aim is to detect the Apple logo (shown at top left in
Fig. 9(a)). Leaves on trees in the right part of the
image lead to crowded edges (see Fig. 9(b)) which
leads to incorrect detection results for PAD-DF (the
Apple logo marked in red). In contrast, our method
successfully avoids the effects of crowed edges and
correctly matches the Apple logo in the image (see
Fig. 9(c)).

We show another example in Fig. 10(a) where
the Apple logo is partially occluded by a wire.

Fig. 8 Matching a swan. (a) Original image with query at top left.
(b) IDSC result. (c) PAD-DF result. (d) TransHist result.
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Fig. 9 Matching an Apple logo on a window. (a) Original image with query at top left. (b) PAD-DF result. (c) TransHist result.

Fig. 10 Matching an occluded Apple logo. (a) Original image with query at top left. (b) PAD-DF result. (c) TransHist result.

Figure 10(b) shows the result generated by PAD-
DF. When detecting shapes in real images, PAD-
DF is much more error-prone in the presence of
crowded edges. Even with partial occlusion, our
method can still survive and recognize the Apple logo
correctly (see Fig. 10(c)).

5.2 Tolerance to occlusion

Partial occlusion is one of the major challenges in
shape detection. However, this phenomenon is quite
common in real world scenarios. This experiment
aimed to explore the tolerance to partial occlusion,
using the dataset proposed by Kwan et al. [12]. It
contains a set of shapes and clipped instances of
them. The shapes are from the MPEG7 dataset [41],
and comprise 20 classes each with 70 shapes. Each
shape is gradually occluded from left to right.
The occlusion rate goes from 0% to 90% in 10%
increments, giving 14,000 shapes and partial shapes
in total.

We follow the rendering approach used by Kwan
et al. [12] to quantify the goodness of matching: we
render the clipped instance (after transformation) on
top of the original shape. Let C be the set of pixels

belonging to the transformed clipped instance in the
space of the original shape and Co be the set of pixels
where C should be, again in the space of the original
shape. We then measure the matched fraction γ as
follows:

γ =
|C ∩ Co|
|C ∪ Co|

γ = 1 indicates a perfect match. Due to rasterization
and numerical errors, we may not get a perfect match
even if the match is visually perfect. Hence, we
regard a transformation with γ > 0.95 as a successful
match.

Figure 11 plots the success rate against the
degree of occlusion. We can see that PAD-DF
and our method can still recognize shapes even
in the presence of significant occlusion: even with
80% occlusion, we still achieve a success rate of
around 25%. Most other descriptors, including TAR,
SC, CSS, and II, are unable to deal with partial
occlusion, and their success rates drop extremely
quickly. Clearly, whole shape matching descriptors
are inappropriate for measuring shape similarity
in the presence of occlusion. Our transformation
approach also outperforms PAD-DF, since the
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Fig. 11 Matching success versus occlusion.

transformation histogram guarantees that matching
pairs with similar transformations are grouped
together, while the distance field is greatly affected
by the cluttered background.

5.3 Tolerance to cluttered edges

We further evaluate robustness to cluttered edges
since it is an important factor when detecting shapes
in cluttered images. To mimic cluttered edges, we
add random arcs to the edge map of a clean shape.
We only control the total length of all added arcs
with respect to the length of the edges of the original
shape. Figure 12 shows a few examples of cluttered
instances with different amounts of clutter.

We collected 96 multi-boundary shapes from the
Internet. We considered 9 different relative amounts
of clutter: 0%, 25%, 50%, 75%, 100%, 150%, 200%,
250%, and 300%. For each shape and clutter
level, we created 4 cluttered instances. This gave
3456 cluttered instances in total. Evaluation was
performed as in Section 5.2.

Fig. 12 Cluttered instances, indicating the amount of clutter
relative to the original total edge length.

Figure 13 plots the results of our experiment.
Since most existing descriptors do not support
matching shapes with multiple boundaries and open
curves, we only compared our approach with shape
contexts and PAD-DF. Our method is much more
successful at matching than the other two methods in
the presence of cluttered edges. Shape contexts are
highly influenced by cluttered edges since they affect
the global quantity used for normalization. PAD-
DF is also affected by cluttered edges because the
distance field is extremely sensitive to noise. Our
method works best since cluttered edges are filtered
out in the transformation domain.

6 Discussion and conclusions

In this paper we have presented a new shape
detection approach that robustly detects shapes in
cluttered images. By utilizing PAD, our method
is able to support shape matching for both
open curves and closed shapes, in a scale-
invariant, rotational-invariant, and translational-
invariant manner. Moreover, our method can detect
shape in the presence of partial occlusion.

Our method also has certain limitations. It is
sensitive to shape deformation, including change of
perspective, because the shape descriptor we use
to calculate the transformation does not provide
perspective invariance. Figure 14(b) shows a
failure in such a case. Although we successfully
find the location of the Apple logo in the image,
we fail to match the whole shape with a correct
transformation. Our method is also sensitive to noise
of a kind that leads to changes in curvature of
boundary points.

Fig. 13 Matching success versus amount of clutter.
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Fig. 14 Matching under perspective transformation. (a) Input
image. (b) Incorrectly detected logo.
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