

CONFERENCE4 – 7 December 2018EXHIBITION5 – 7 December 2018Tokyo International Forum, JapanSA2018.SIGGRAPH.ORG

Deep Unsupervised Pixelization

Chu Han^{1, 2, 3}, Qiang Wen², Shengfeng He², Qianshu Zhu², Yinjie Tan², Guoqiang Han², Tien-Tsin Wong^{1, 3}

¹The Chinese University of Hong Kong,

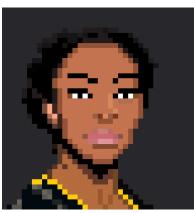
²South China University of Technology,

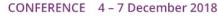
³Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, SIAT.

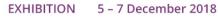
PIXEL ARTS

• Early gaming devices and computer system

- Become an art form
 - Pixel art game
 - Portrait







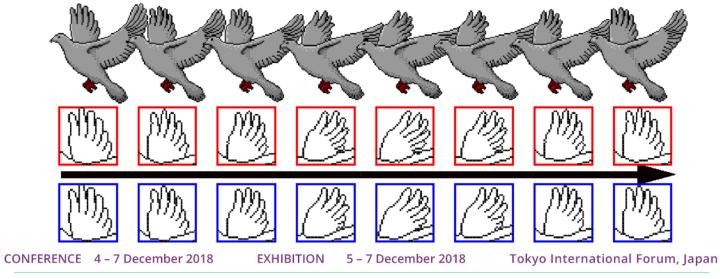
Tokyo International Forum, Japan

- Manually designed pixel arts
 - Pixel-by-pixel
 - Tedious
 - Time consuming

- Image Downscaling
 - Perceptually based [Öztireli and Gross 2015]
 - Detail-preserving [Weber et al. 2016]
 - Content adaptive [Kopf et al. 2013]

- Image Downscaling
- Kernel-based nature can hardly synthesize sharp edges.

- Optimization Approaches
 - Pixel art animation [Kuo et al. 2016]



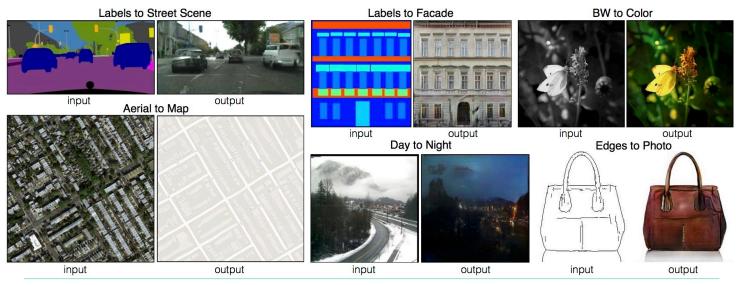
- Optimization Approaches
 - Pixel art animation [Kuo et al. 2016]
 - Rasterize vector line arts [Inglis et al. 2013]

- Optimization Approaches
 - Pixel art animation [Kuo et al. 2016]
 - Rasterize vector line arts [Inglis et al. 2013]
 - Image abstraction [Gerstner et al. 2012]

CONFERENCE 4 – 7 December 2018 EXHIBITION 5 – 7 December 2018 Tokyo International Forum, Japan

- Optimization Approaches
 - Pixel art animation [Kuo et al. 2016]
 - Rasterize vector line arts [Inglis et al. 2013]
 - Image abstraction [Gerstner et al. 2012]
- Pay more attention to the accuracy than the aesthetic consideration

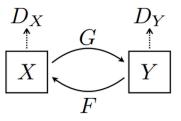
- Image-to-image translation
 - Labels to street scene [Isola et al. 2017]



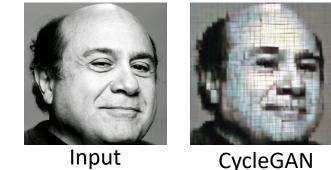
- Image-to-image translation
 - Labels to street scene [Isola et al. 2017]
 - [Mirza and Osindero 2014]
 - [Odena et al. 2016]
 - [Xie and Tu 2015]
- Hard to collect paired training data of pixel arts

UNSUPERVISED LEARNING

- Cycle consistency loss
 - [Zhu et al. 2017]
 - [Yi et al. 2017]

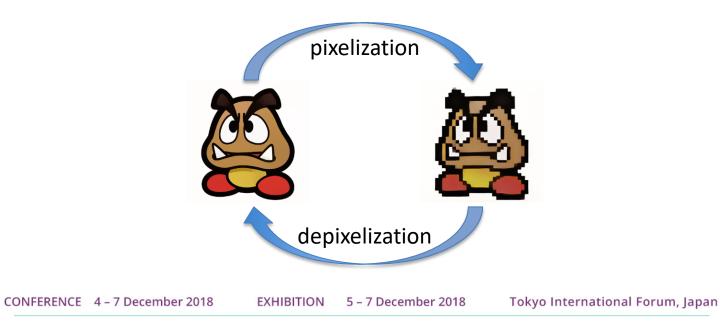


• Artifacts and inconsistent colors



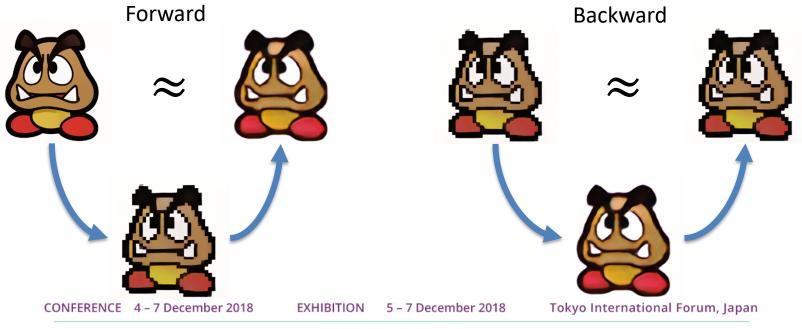
Y OKEY IDEA

• Duality of pixelization and depixelization



OUR UNSUPERVISED LEARNING DESIGN

• Reversable training loop for unsupervised learning

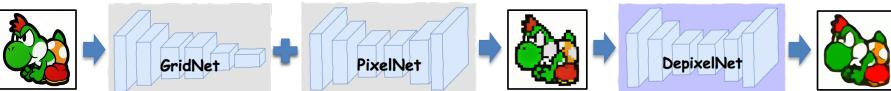


Our approach

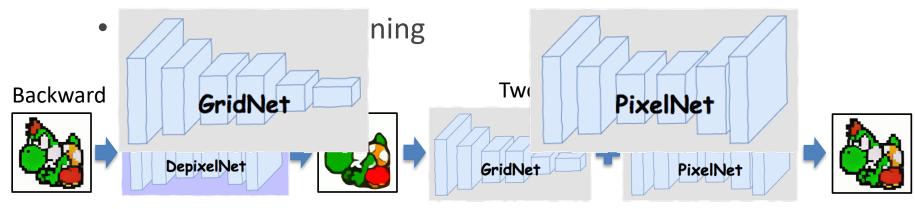
CONFERENCE 4 – 7 December 2018 EXHIBITION 5 – 7 December 2018 Tokyo International Forum, Japan

- Cascaded network
 - Three subnetworks
 - Bi-directional training

Two-combo Pixelization



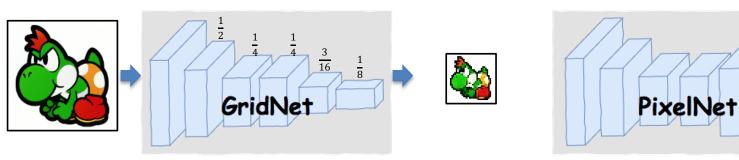
- Cascaded network
 - Three subnetworks



SA2018.SIGGRAPH.ORG

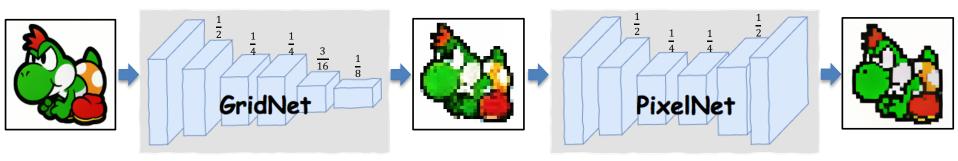
TWO-COMBO PIXELIZATION

• GridNet: initialize aliasing effect



TWO-COMBO PIXELIZATION

 PixelNet: refine pixel art and generate crisper edges

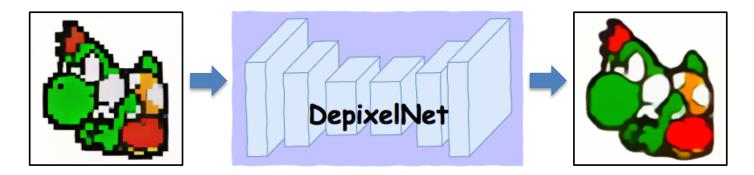


Easier for training and get a better result

CONFERENCE 4 – 7 December 2018 EXHIBITION 5 – 7 December 2018 Tokyo International Forum, Japan

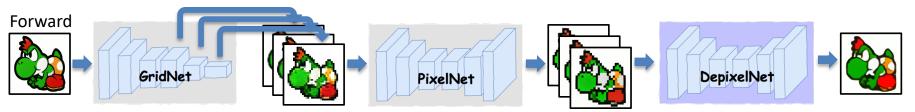
DEPIXELNET

• Depixelize pixel arts



MULTISCALE TRAINING

• Improve the generalization



Randomly pick one

Input Single level CONFERENCE 4 - 7 December 2018

Multi-level EXHIBITION 5 - 7 December 2018

Allows network to learn cross-level semantically important details

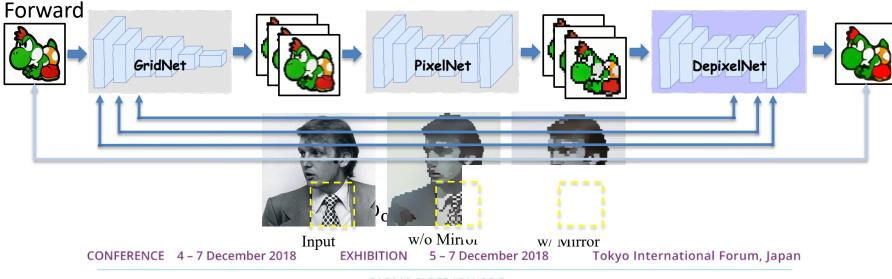
Tokyo International Forum, Japan

- Mirror loss
- Adversarial loss

LOSSES

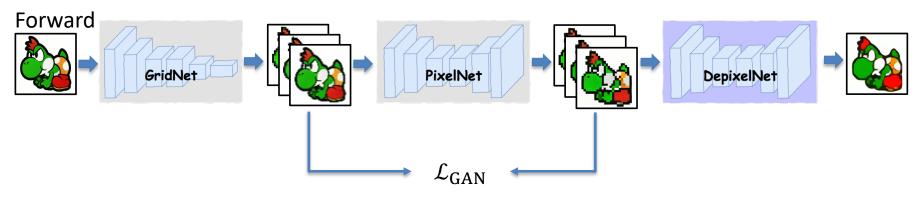
- L1 loss
- Gradient loss

- Hold the reversibility of unsupervised learning
 - Input/output, f



ADVERSARIAL LOSSES

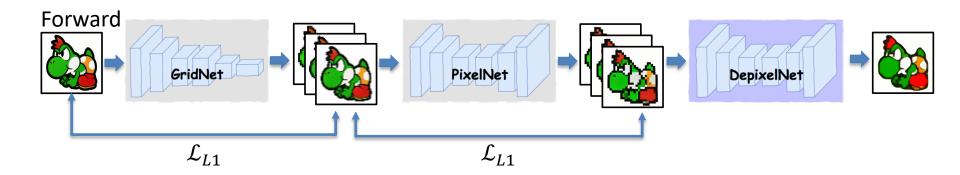
• Maintain pixel art style



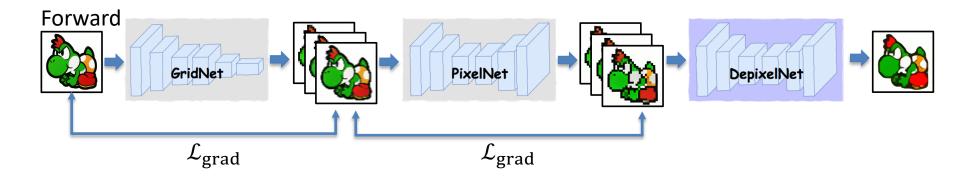
Adversarial loss alone cannot guarantee the color correctness

CONFERENCE 4 – 7 December 2018 EXHIBITION 5 – 7 December 2018 Tokyo International Forum, Japan

• Guarantee color consistency



• Ensure image smoothness and sharpness of edges



OBJECTIVE FUNCTION

• GridNet

 $\mathcal{L}_{\text{GN}} = \mathcal{L}_{\text{GAN}}(GN, \mathcal{D}_{\text{GN}}, F) + \mathcal{L}_{L1\&\text{grad}}(GN, F) + \mathcal{L}_{L1\&\text{grad}}(GN, B)$

• PixelNet

 $\mathcal{L}_{\text{PN}} = \mathcal{L}_{\text{GAN}}(PN, \mathcal{D}_{\text{PN}}, F) + \mathcal{L}_{L1\&grad}(PN, F) + \mathcal{L}_{\text{mirr}}(DN \to PN, B)$

• DepixelNet

 $\mathcal{L}_{\text{DN}} = \mathcal{L}_{\text{GAN}}(DN, \mathcal{D}_{\text{DN}}, B) + \mathcal{L}_{L1\&\text{grad}}(DN, B) + \mathcal{L}_{\text{mirr}}(GN \rightarrow DN, F)$

- Training: three scales
- Testing: only output the third last conv-block
- Appearance: approximately 1/6 original input

• 900 pixel arts and 900 cliparts

Results and experiments

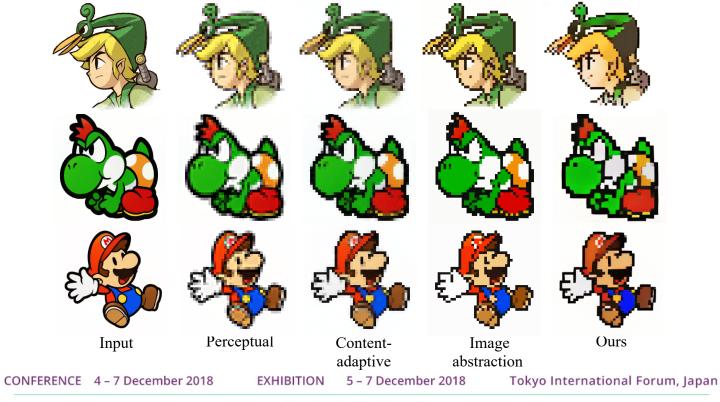
CONFERENCE 4 – 7 December 2018 EXHIBITION 5 – 7 December 2018 Tokyo International Forum, Japan

COMPETITORS

- Bicubic
- Perceptual [Öztireli and Gross 2015]
- Content-adaptive [Kopf et al. 2013]
- Image abstraction [Gerstner et al. 2012]

COMPARISONS TO EXISTING METHODS

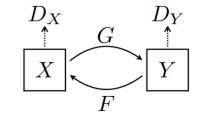
MORE RESULTS - CARTOON



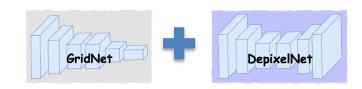
MORE RESULTS - PORTRAIT

COMPARISON TO ALTERNATIVE CNN MODELS

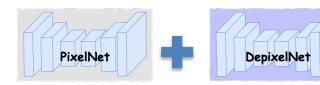
CycleGan



• "GridNet alone"

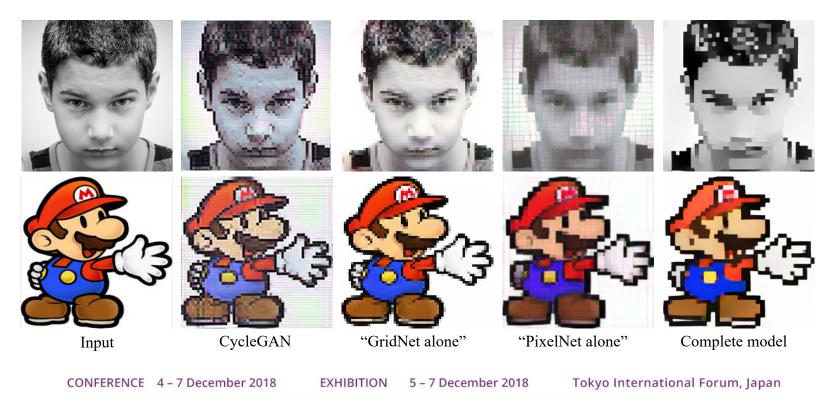


• "PixelNet alone"



Sponsored by

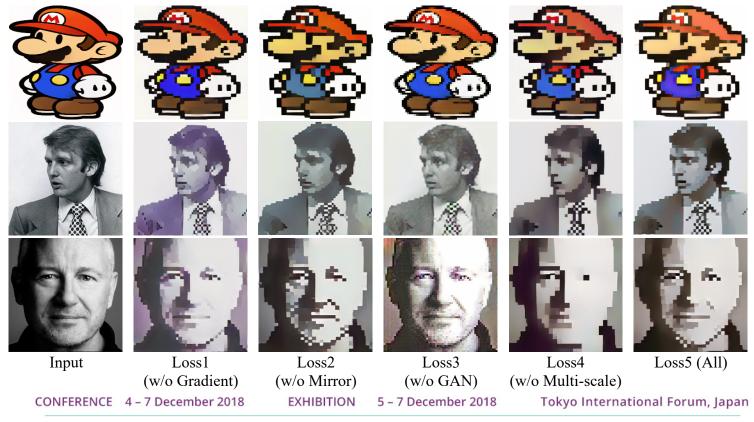
COMPARISON TO ALTERNATIVE CNN MODELS



IMPACT OF LOSSES

• Loss1: $L_{L1} + L_{mirr} + L_{GAN}$ Loss2: $L_{L1} + L_{grad} + L_{GAN}$ Loss3: $L_{L1} + L_{grad} + L_{mirr}$ Loss4: $L_{L1} + L_{grad} + L_{mirr} + L_{GAN}$ (all w/o multi-scale) Loss5: $L_{L1} + L_{grad} + L_{mirr} + L_{GAN}$ (all w/ multi-scale)

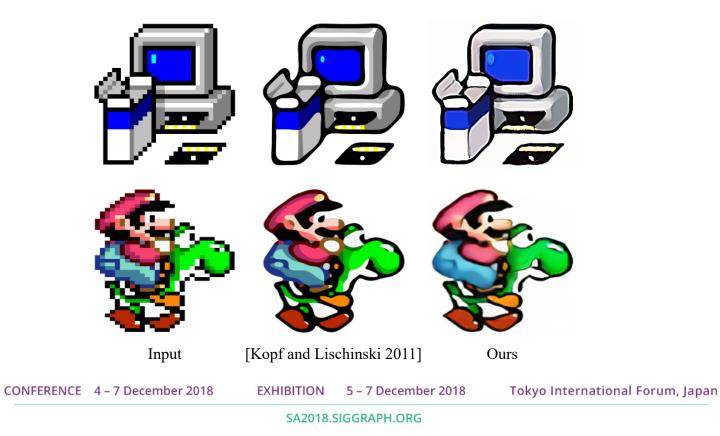
IMPACT OF LOSSES



COMPARISON TO MANUAL PIXEL ARTS

SA2018.SIGGRAPH.ORG

DEPIXELIZATION



- Pixelized appearance is always approximately 1/6 of the resolution of the input
- Unpredictable artifacts and color change introduced by GAN

- In this paper, we propose a cascaded network for unsupervised pixelization.
- Mirror loss is proposed to hold the reversibility of our unsupervised learning.
- Dividing the network into three subnetworks is more effective than solving with a generic network.

CONFERENCE 4 – 7 December 2018 EXHIBITION 5 – 7 December 2018 Tokyo International Forum, Japan SA2018.SIGGRAPH.ORG

THANK YOU!

The Chinese University of Hong Kong Email: <u>chan@cse.cuhk.edu.hk</u> South China University of Technology Email: <u>shengfenghe7@gmail.com</u>