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Abstract
Vectorizing line drawing is necessary for the digital workflows of 2D animation and engineering design. But it is challenging
due to the ambiguity of topology, especially at junctions. Existing vectorization methods either suffer from low accuracy or
cannot deal with high-resolution images. To deal with a variety of challenging containing different kinds of complex junctions,
we propose a two-phase line drawing vectorization method that analyzes the global and local topology. In the first phase, we
subdivide the lines into partial curves, and in the second phase, we reconstruct the topology at junctions. With the overall
topology estimated in the two phases, we can trace and vectorize the curves. To qualitatively and quantitatively evaluate our
method and compare it with the existing methods, we conduct extensive experiments on not only existing datasets but also our
newly synthesized dataset which contains different types of complex and ambiguous junctions. Experimental statistics show
that our method greatly outperforms existing methods in terms of computational speed and achieves visually better topology
reconstruction accuracy.

CCS Concepts
• Computing methodologies → Neural networks; Image manipulation;

1. Introduction

Vector images are a compact format of digital graphics, which use
mathematical primitives to represent lines and curves. As vector
graphics are rendered in analytical procedures, they can be easily
rasterized in an optimal way with respect to the specific resolution.
Also, manipulating vector graphics is flexible and straightforward,
as one can modify the parameters and control points pragmatically,
or with user interfaces. Comparing to raster image editing, vectors
can be modified arbitrarily without losing image quality. As a re-
sult, vector graphics have been widely used in many professional
contents creation workflows, such as Computer-aided design, UI
design, 2D animations, etc.

Despite the benefit of digital editing with vector graphics, many
art forms cannot be directly created in vector representation, such
as visual arts. Because they require free-form drawing to make
the contents more attractive and vivid. What’s more, drawing with
parametric curves is not intuitive for humans. Therefore, many
artists and architects still prefer paper and pencils to make the first
version of their work and afterward digitize them into vector graph-
ics. It makes vectorization process to be the most critical step of the

† Corresponding author: Tien-Tsin Wong (ttwong@cse.cuhk.edu.hk).

digital content creation. And the quality of vectorization determines
the faithfulness to the original and the difficulty in further editing.

So it is fundamental to design a vectorization algorithm to con-
vert raster line drawings into vectors accurately. However, the task
is non-trivial because of the difficulties in analyzing the topology
of raster line drawings due to the ambiguity of line drawings, espe-
cially at complex junctions. Figure 1 illustrates two representative
ambiguous cases. At junctions, where multiple curves intersect, the
connectivity is difficult to predict. It is also challenging to classify
the pixels of closing lines.

To handle these cases, Simo-Serra et al. [SSII18] attempted to
edit raster line drawings directly, but they still cannot generate vec-
tor outputs for finer editing. Traditional vectorization methods es-
timate the topology of raster images and afterward fit parametric
curves by minimizing the reconstruction error. However, most of
them fail to decouple complex junctions and line ambiguity. Some
recent work like Bessmeltsev et al. [BS19] analyze pixel orienta-
tions so that they can detect and process junctions, but they can
only distinguish T- and X-junctions. [NHS∗13] and [KWÖG18] try
to reconstruct the topology by an exhaustive search of all possible
connectivities, but obviously, the computational complexity greatly
limits their practical uses.

Different from the existing methods, we do not assume any spe-
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Figure 1: Two representative types of ambiguity. In the left case,
two curves are very close to each other. In the right case, the con-
nectivity is ambiguous.

cific types of junctions. Instead, we use neural networks to automat-
ically infer the junction connectivity with the highest likelihood.
To achieve the goal, we propose to analyze topology from global
to local scale, and our method consists of two phases: line subdi-
vision and topology reconstruction. In the line subdivision phase,
we oversegment the lines into partial curves via centerline extrac-
tion and junction detection. The connectivity at junction locations
is not considered during this phase. For this purpose, we use a data-
driven method to extract the centerlines with a convolutional neu-
ral network (CNN) inspired by [SSII18]. We use a multi-task CNN
to simultaneously conduct centerline extraction and junction de-
tection as they are closely related. With the centerlines and junc-
tion points, we can simply achieve the line subdivision to break the
whole drawing into partial curves.

Afterwards, in the topology reconstruction phase, we estimate
the connectivity of partial curves at each junction. To effectively
deal with different types of junctions, we tailor another CNN and
train the network with a specially designed dataset containing syn-
thesized line drawings with various types of complex and ambigu-
ous junctions. The reconstructed curves will be output from the
network model and vectorization is straightforward by using the
overall topology and tracing the connected curves.

To qualitatively and quantitatively evaluate our method, we con-
duct extensive experiments on existing and our newly synthesized
datasets. Statistics show that our method greatly outperforms ex-
isting methods in terms of computational speed and achieves visu-
ally better topology reconstruction accuracy. Our contributions are
summarized as follows:

• We propose a two-phase method to vectorize raster line drawing
via line subdivision and topology reconstruction.
• Our vectorization method is data-driven by utilizing deep con-

volutional neural networks. The method is robust enough to pro-
cess line drawings in various styles or with complex shapes. The
input size can be set arbitrarily.
• Our vectorization method is more efficient and achieves visually

better topology reconstruction accuracy comparing to existing
methods.

2. Related Works

Existing vectorization methods can be roughly classified into
two categories: region-based methods and stroke-based methods.
Region-based methods vectorize shaded images (e.g. photographs
and cartoon images) into various primitives such as linear color gra-
dients [LL06] and PDEs [OBB∗13], while stroke-based methods

convert line information into parametric representation. Our pro-
posed method belongs to the latter category.

Early stroke-based methods have strong assumptions on the line
shape [JV97, HT06, CY98]. In particular, Janssen et al. [JV97]
only vectorizes straight line segments [JV97]. Hilaire and
Tombre [HT06] use circles and straight lines to represent vector-
ization results. However, these methods cannot be applied to hand-
drawn line drawings whose shapes cannot be simply assumed. To
vectorize common hand-drawn line drawings, Chang et al. [CY98]
conduct piecewise cubic Bézier curves fitting on the lines. The re-
cent work by Donati et al. [DCP17] proposes an automatic system
to vectorize fashion hand-drawn sketches using Pearson’s correla-
tion coefficient with multiple Gaussian kernels. But neither Chang
et al. [CY98] nor Donati et al. [DCP17] analyze the topology of
curves, especially at junctions. So their results are inaccurate when
there exists complex topology.

Some recent works analyze the topology of junction ar-
eas [NHS∗13, FLB16, BS19, KWÖG18]. In particular, Noris et
al. [NHS∗13] propose a "reverse drawing" procedure to reconstruct
all possible drawing states for a junction. The most likely stroke
configuration is selected to represent the topology. However, their
method is not data-driven and fails in many complex cases. Favreau
et al. [FLB16] utilize global information to simplify and vector-
ize the sketch drawing that contains numerous overdrawn strokes.
Unfortunately, their method often leads to oversimplified results,
which is significantly deviating from the initially drawn contours.
Most recently, Bessmeltsev et al. [BS19] track the orientation of
curves with frame field and vectorize the curves by tracing frame
fields. However, this method can only tackle T- and X-junctions but
fails at more complex junctions. Another method proposed by Kim
et al. [KWÖG18] uses a deep neural network to predict the possi-
bility that two pixels occur on the same path, and then semantically
segment the line drawings using graph cut. As their computational
complexity is related to the number of line pixels, their method can-
not deal with high-resolution images. All the above methods suffer
from low accuracy or limited scalability. In sharp contrast, our pro-
posed method can accurately analyze the topology of line drawing
that contains complex junctions and is computational effective for
arbitrary resolution.

Also, there exist some other works and commercial tools re-
lated to the conversion from raster images to vector graphics. In
particular, commercial tools such as Adobe Live Trace, Corel-
DRAW, and Inkscape support to vectorize line drawings. Unfor-
tunately, these commercial tools usually require tedious human ad-
justment to some parameters to achieve the best results. For ex-
ample, CorelDRAW needs to control "detail" and "smoothness"
and it is time-consuming to seek for the best combinations. Simo-
Serra et al. [SSISI16] utilize deep neural networks to conduct
sketch simplification of raster line drawings and afterward pro-
pose an interactive inking approach to convert a rough pencil
sketch into a clean line drawing in [SSII18]. Chen et al. [CTYX17]
and Ha et al. [HE17] use recurrent neural networks to generate
sketch drawings based on human input. The domain-specific meth-
ods [WRS∗09, CFL13, WSCY15] build up topology by extracting
line-network for identifying roads in aerial images, blood vessels
in medical images, or galaxy filament in astronomic images. Due
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(a) Input Image 𝐼 (g) Overall Topology	𝑇O

LSNet

(e) Junction 𝐽𝑖 (f)Topology 𝑇𝑖

... ...TRNet

(d) Subdivision 
Result

Line Subdivision Topology Construction

(b) Centerline Image 𝐼𝐶

(c) Junction Image 𝐼𝐽

Figure 2: System overview. Our proposed method analyzes and reconstructs the topology of lines with two phases. The first phase subdivides
the lines into partial curves ignoring the junctions. The second phase reconstructs the topology at junctions by predicting the line connectivity.

to their strong assumptions of the shape priors, their method cannot
be applied to line drawings.

3. Approach

3.1. Overview

To better analyze the structure and topology of raster line draw-
ings, we firstly extract the centerline images. Centerline images can
compactly represent the essential structure of line drawing images.
Given the centerline image and the line topology, accurate vector-
ization can be straightforwardly conducted. So as overviewed in
Figure 2, we propose our line drawing vectorization method con-
sisting of two phases: line subdivision and topology reconstruction.
In the first phase, given an input line drawing image I (Figure 2(a))
with variable line width and arbitrary resolution, we generate the
centerline image IC (Figure 2(b)) and the junction image IJ (Fig-
ure 2(c)) providing junction candidates. Then, we subdivide the
centerline image into partial curves by disjointing all connected
curves at the location of junction candidates (Figure 2(d)). In the
second phase, we eliminate the ambiguity at junctions by estimat-
ing the connectivity of the partial curves and reconstruct the topol-
ogy Ti (Figure 2(f)) at each junction candidate Ji (Figure 2(e)). With
Ti, we can separate distinct connected curves into independent lay-
ers. Finally, the overall topology TO (Figure 2(g)) is summarized
with IC, IJ , and {Ti}N . Then based on TO, we trace and fit the curves
with the cubic Bézier curve least-square fitting from [Kha07] to
create the final vector output.

...

...

...

Res-block Conv

Centerline Extraction

Junction Detection

Shared Low-level 
FeaturesInput Image

Centerline Image

Junction Image

Figure 3: Structure of Line Subdivision Network (LSNet) designed
as a multi-task CNN. Given an input image, it simultaneously gen-
erates a centerline image and a junction image.

3.2. Line Subdivision

In the first phase, we subdivide the lines based on the centerline im-
age IC (Figure 2(b)) and the junction image IJ (Figure 2(c)), both of
which are generated with our Line Subdivision Network (LSNet).
As shown in Figure 3, LSNet simultaneously conducts centerline
extraction and junction detection in a multi-task manner, as these
two sub-tasks are closely related to each other. LSNet is trained
with a composite dataset, which will be discussed in detail in Sec-
tion 3.4.

Centerline Extraction. As stated before, centerline extraction
is essential to the estimation of line structure and topology. The
traditional method [ZS84] utilizes morphological operators to ex-
tract the centerline or skeleton of binary lines, but the results suf-
fer from a certain degree of distortion at junctions or around line
ends. The recent work by Simo-Serra et al. [SSII18] uses a data-
driven method to normalize all the strokes into constant-width
and achieves higher accuracy. Motivated by Simo-Serra’s method,
given an input image I with variable-width strokes, we also gener-
ate constant-width centerline utilizing CNN in a data-driven man-
ner.

Junction Detection and Line Subdivision. As centerline does
not infer topology at junctions, junction detection is necessary for
topology reconstruction in the next phase. Figure 4 shows positive
and negative examples of junction candidates from a successful de-
tection. After the detection, the junction candidates are stored into
a junction image IJ which is a subset of the centerline image IC.
Once we acquire the IC and IJ , we can conduct the line subdivision
by simply removing all detected junction candidates from IC and
computing the connected components to acquire partial curves, as
illustrated in (Figure 2(d)).

Network Structure. We propose to extract the centerline and
junction candidates simultaneously from a single framework, due
to the fact that junctions are always located at the intersection of
centerlines. In other words, a higher probability of centerline inter-
section also indicates a higher potential of the existence of a junc-
tion. Here, we employ a multi-task deep neural network [Car97] to
jointly achieve both tasks. As illustrated in Figure 3, our network
starts with a shared path, which consists of two convolutional layers
and eight residual blocks. The two task-specific branches are with
the same structure, which is composed of eight residual blocks fol-
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lowed by two convolutional layers. We use batch normalization and
a Rectified Linear Unit (ReLU) activation function right after all the
convolutional layers except for the output layer of each branch. To
map our output to the range of [-1, 1], we use the tanh activation
function for each output layer. The size of the convolutional ker-
nels is 3×3 expect for the 1×1 kernel in the output layers. As the
network is fully convolutional, the method is capable of handling
input images with arbitrary resolutions.

Loss Function. the pair of the training data consists of an input
image and two ground truth output images which are the centerline
image and the junction image. Data preparation is detailed in Sec-
tion 3.4. Finally, we train the LSNet in a supervised manner with
the combined loss:

LS = α||In− În||22 +(1−α)||IJ− ÎJ ||22, (1)

where || · ||2 is the L2-norm. In and IJ are the ground truth centerline
image and junction image. În and ÎJ are the two predicted images.
α is the weighting factor balancing two tasks with a default value
of 0.5.

Figure 4: A local patch of an centerline image. Two red boxes give
examples of junction candidates (shadowed with red slash). The
green box gives an example of pixels that are not candidates (shad-
owed with green slash).

3.3. Topology Reconstruction

After subdividing the centerline images IC into a set of partial
curves (Figure 2(d)), we then analyze the topology at each junc-
tion to derive the connectivity of these partial curves. We crop a
fixed-size 32× 32 patch Ji (Figure 2(e)) from the centerline im-
age Ic (Figure 2(b)) at each junction candidate in IJ (Figure 2(d)).
Then the Topology Reconstruction Network (TRNet) is proposed
to predict its topology and distinguish each reconstructed curves in
a multi-layer form (Figure 2(f)).

Given the input of Ji containing up to K partial curves, we expect
the TRNet to predict distinct connected curves into at most K lay-
ers. A straightforward idea is to predict K output layers from a sin-
gle input and minimize the distance to the ground truths. However,
this is not appropriate as we cannot assume the orders of these K
outputs. Instead, we train the network to focus only on the connec-
tivity of partial curves and ignore their relative orders in the input
and output tensors. To do so, we manually assign an order indicator
Oi to each input partial curve and ensure the order of curve predic-
tion are still with respect to Oi. This can be achieved by modifying
the shape of the input from 32×32×1 into 32×32× (K+1). The
first layer is the original patch, while each of the rest layers only

contains a partial curve, as shown in the network input in Figure 5.
An example of order indicator is shown in Figure 6(b). The shape
of the output layers is still 32× 32×K, representing a maximum
of K distinct connected curves, as shown in Figure 6(c).

Since we only care about the topology at the target junction, all
unrelated partial curves in Ji should be removed in advance. The
removal process consists of two steps, as illustrated in Figure 7. In
the first step, we remove all the junctions that we are not interested
in (Figure 7(b)). Afterwards, we remove all the isolated curves that
are not connected to the target junction (Figure 7(c)).

Network Structure. As illustrated in Figure 5, the TRNet is
stacked with two convolutional layers, eight residual blocks, and
finally two convolutional layers. Also, there is a skip connection
from the network input to the output of the second last convolu-
tional layer to better propagate the orders.

Loss Function. We train the TRNet in a supervised manner with
the following loss:

LT = ||Ti− T̂i||22, (2)

where || · ||2 is the L2-norm. Ti and T̂i are the ground truth and the
predicted topology at the junction Ji respectively.

Order

Indicator

Target Patch

...

Topology Construction Net

Figure 5: Structure of Topology Reconstruction Network (TRNet).
The (K + 1)-layer input of TRNet is a junction patch augmented
with the order indicator with K layers each of which contains at
most one partial curve. The output is K layers each of which con-
tains at most one complete curve.

(a) Junction J" (b) Order Indicator O"

(c) Output of TRNet

Figure 6: The layer order indication scheme of TRNet. The out-
put layer order is determined by the input order indicator. Given
a junction patch (a), the K-layer order indicator (b) is generated
by randomly putting each partial curve in (a) into one layer of (b).
The layer order of the network output (c) is uniquely determined by
(b).

3.4. Dataset Preparation

Although converting a raster image to a vectorized image is an ill-
posed problem, the inverse process, i.e., converting a vectorized
image to a raster image, is straightforward. So we can create a syn-
thetic dataset by programmatically generating vector drawings and
rasterizing them in different rendering configurations.
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(a) (b) (c) (d)

Figure 7: A junction patch cropped from the centerline image IC
may contain pixels that are unrelated to the target junction. Before
processed by TRNet, we remove unrelated pixels with two steps.
(a) The cropped junction patch; The red pixel indicates the target
junction. (b) Step 1: removing unrelated junctions; (c) Step 2: re-
moving partial curves that are not connected to the target junction;
(d) Input of TRNet.

To effectively train the networks and ensure the diversity of the
line drawings, we synthesize a dataset that contains curves with
various shapes and different kinds of junctions. We generate vector
images with cubic Bézier curves. Such curve type is widely used
to model smooth paths and is flexible to simulate different shapes
of strokes in line drawings. For each vector image, we randomly
assign four points to be junctions. For each junction point, we gen-
erate a junction with a particular type varying from valence-3 to
valence-6. As illustrated in Figure 8, for each type of valence, we
freely synthesize the connectivity to maximize the topology diver-
sity of our dataset.

(a) Valence-3 (b) Valence-4 (c) Valence-5 (d) Valence-6

Figure 8: Examples of different types of junctions in our synthe-
sized dataset. Valence-N means that there are N partial curves con-
nected to the target junction.

Then the training pairs are obtained by rasterizing the above
synthesized vector images with a 256× 256 canvas. As illustrated
in Figure 9, to manually manipulate the width changes along the
curve, we randomly select one out of four strategies: gradually
growth (Figure 9(a)); first increasing and then decreasing (Fig-
ure 9(b)); random width (Figure 9(c)); uniform width (Figure 9(d)).
We set a grayness percentage between 0 to 100 for each curve.
Then we generate the corresponding centerline image by rasteriz-
ing the vector curves into one-pixel-wide, solid black curves (Fig-
ure 10(b)). To generate the corresponding junction image, we re-
move all the unambiguous pixels from the centerline image to pre-
serve ambiguous pixels (Figure 10(c)).

To prepare the training dataset, We generate 20,000 vector im-
ages and rasterize them into 20,000 raster training pairs for the
Line Subdivision Network (LSNet). Totally 60,000 training pairs
for the Topology Reconstruction Network(TRNet) are prepared by
cropping local patches as described in Section 3.3.

3.5. Training details

We implement our networks with TensorFlow [AAB∗15] and sep-
arately train LSNet and TRNet on the NVIDIA TITAN V GPU.

(a) (b) (c) (d)

Figure 9: Four types of lines width mimicking different drawing
style. (a) Gradually growth; (b) First increasing and then decreas-
ing; (c) Random width; (d) Uniform width.

(a) Input Image (b) Centerline Image (c) Junction Image

Figure 10: A training pair example of LSNet. (a) Input line drawing
with variable line width; (b) One-pixel-wide centerline image; (c)
The junction image with junction pixels only.

We use the Adam optimizer [KB14] with β1=0.9, β2=0.999. The
learning rate is initially set to 1e−4, and linearly decreases to 1e−6.
For LSNet, the batch size is set to 3, and the training process takes
about 40 hours for totally 80 epochs on a single GPU. For TRNet,
the batch size is set to 64, and the training process takes about 3
hours for totally 40 epochs on a single GPU.

4. Experimental Results

To demonstrate the effectiveness of our proposed method, we con-
duct qualitative and quantitative evaluations on both of the publicly
available Quick, Draw! dataset [JRK∗16] and our newly synthe-
sized dataset. We first separately show the efficacy of each step,
including centerline extraction, junction detection, and topology
reconstruction. Then, we demonstrate the efficacy of the whole
method.

4.1. Centerline Extraction and Junction Detection

We quantitatively evaluate the accuracy of centerline extraction and
junction detection on a synthesized testing set that is generated in
the same way mentioned in Section 3.4. The testing set contains
totally 1000 image pairs and does not overlap with the training set.
Each image pair consists of an input image I, a centerline image IC
and a junction image IJ .

We use the weighted absolute difference (WAD) and intersection
over union (IoU) metric between the predicted centerline (junction)
images and the ground truth to evaluate the framework accuracy.
Particularly, WAD only evaluates the non-zero pixels in the ground
truth as:

WAD =
1

∑M ∑M�
∣∣I− Î

∣∣ , (3)
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Where I and Î are the ground truth and the predicted centerline
(junction) images. M is a binary mask whose pixel value equals 1
only if the corresponding pixel in I is non-zero value; � is a pixel-
wise multiplication operator. The lower WAD value means better
accuracy. Besides, IoU measures the overlapping rate of the ground
truth and the predicted centerline (junction) images as:

IoU =
B∩ B̂
B∪ B̂

(4)

where B and B̂ are the binarized ground truth and predicted center-
line (junction) image respectively. The threshold for binarization is
set to 0.5. The higher IoU value means better accuracy.

Table 1 lists the average WAD and IoU scores over the images
of the training and testing set. As scores of the training and testing
sets are very similar, we can conclude that our LSNet achieves good
generalization ability and is unlikely to overfit.

Centerline Junction
WAD IoU WAD IoU

Training 7.3012 0.9701 12.0122 0.9089
Testing 7.4410 0.9685 13.5452 0.9002

Table 1: Quantitative evaluations on LSNet.

4.2. Topology Reconstruction

TRNet predicts the connectivity of the partial curves at each junc-
tion. Examples of input and output of the TRNet are illustrated in
Figure 11. We colorize the connected partial curves into different
colors. We can see that connectivity of junctions with different va-
lence can be correctly estimated.

We also quantitatively evaluate the topology construction accu-
racy for junctions with different valences. The reconstruction is
considered successful only if the connection of partial curves is
identical to the ground truth. We test 500 junctions for each va-
lence, and the average accuracy is listed in Table 2. We can see that
we have achieved high accuracy for Valence-3, 4, 6, and accept-
able accuracy for Valence-5. Interestingly, we find that the perfor-
mance of odd-valence reconstruction is relatively weaker than that
of even-valences. This is probably because odd-valence junctions
contain more ambiguity in reconstructing joint intersection and ter-
mination.

Valence 3 4 5 6
Accuracy 0.976 0.996 0.908 0.970

Table 2: Topology reconstruction accuracy of TRNet on different
junctions types (from Valence-3 to Valence-6).

4.3. Line Vectorization

We also qualitatively and quantitatively evaluate our vectoriza-
tion results and compare with those generated by the Favreau’s
method [FLB16] and Kim’s method [KWÖG18]. For Favreau’s
method, we use the implementation from the author and set all
the parameters as default. For Kim’s method, we re-train their
model with samples from the Quick, Draw! dataset in four classes
(BASEBALL, CAT, CHANDELIER, and ELEPHANT). We test
Favreau’s, Kim’s, and our methods on two classes (BACKPACK
and BICYCLE) of Quick, Draw! dataset. For each vector image in

(a) valence-3

(b) valence-4

(c) valence-5

(d) valence-6

Figure 11: Topology reconstruction results of variable junction
types. The first and third rows are the input of TRNet, and the sec-
ond and fourth rows are the output of the TRNet.

the testing set, we raster it into two types of width: 2-pixel width
and variable width. Two-pixel width is the default setting in the
Quick, Draw! dataset, while variable width is to simulate the re-
sults drawn by pressure-sensitive pen tablet.

Figure 12 illustrates the vectorization results generates by dif-
ferent methods. Favreau’s method generates oversimplified vec-
tor images, which obviously deviate from the input image. It also
fails to capture non-closure regions. Given the input image with
two-pixel-wide curves (Figure 12(c, d, e, and f)), Kim’s method
generates relatively good results on some simple junctions. How-
ever, when there come complicated junctions (e.g., the valence-
5 junction in the blow-up in image (e) and valence-6 junction in
the blow-up in image (f)), Kim’s method fails to get the correct
topology. This is because their method can only handle the over-
lap of two curves. When dealing with variable-width cases, Kim’s
method may fail to segment the curves (Figure 12(a)) or mistak-
enly regard a long curve as several short segments (e.g., the bicycle
wheel in Figure 12(b)). In sharp contrast, thanks to our two-phase
topology analysis, our method can accurately vectorize both the 2-
pixel-width and variable-width cases.

We also compare our method with Favreau et al. [FLB16] and
Bessmeltsev [BS19] on high-resolution line drawing images. As
shown in Figure. 17, Favreau’s results get smooth results in sacri-
fice of accuracy. Bessmeltsev’s method can get precise vectoriza-
tion results but there exist unpleasant line breaks on non-junction
areas (e.g., the black box in image Mouse). In contrast, our method
does not contain line breaking on non-junction regions since we
only apply topology reconstruction on the areas. Also, our method
outperforms Bessmeltsev’s method on complicated junctions with
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OursInput Image Ground Truth [Favreau et al. 2016]  [Kim et al. 2018]

(a)
(b)

(c)
(d)

(e)
(f)

Figure 12: Vectorization results generated by different methods.
The cases in (a) and (b) are of variable width while the other cases
are of 2-pixel width. The blowups of the complicated junctions are
illustrated in (e) and (f).

lots of curves (e.g. the black box in image Dracolion) and small
circles (e.g. the balck box in image Sheriff ).

We also quantitatively evaluate whether the topology of vector-
ization results is consistent with the ground truth. Considering that
Favreau’s and our methods fit splines to each stroke while Kim’s
method regards each stroke as a region, it’s intractable to compare
the vectorization results of the three methods directly. So we in-
stead map their line segmentation results back to ground truth lines,
such that they can be compared in the same domain. In particular,
the ground truth lines are rasterized with a width of 1. Then all
pixels of the lines can be classified by a k-nearest-neighbor search
from the nearby segmented pixels in the line segmentation results.
In our experiment, k is set to 5. With the ground truth and predicted
class es, we calculate the stroke IoU (SIoU) as,

SIoU =
1
n ∑

i=1,...,n
max

j=1,...,m

Pi∩ P̂j

Pi∪ P̂j
, (5)

where Pi and P̂j are ground truth and predicted strokes. The accu-
racy of each ground truth stroke is determined by the maximally
overlapped predicted stroke. The average SIoU scores over 100
testing images are listed in Table 3. Our method significantly out-
performs the two existing methods. Moreover, compared to the two
existing methods, our method is more robust to the change of input
line width.

4.4. Ablation Study

Multi-task Design of Topology Subdivision. Our Topology Subdi-
vision Network is designed to perform centerline extraction and

Method 2-pixel width Variable widths
Favreau [FLB16] 0.4031 0.3721
Kim [KWÖG18] 0.7662 0.2147

Ours 0.8192 0.7576

Table 3: Average SIoU on Quick, Draw! dataset. Higher is better.

Design
Centerline Junction

WAD IoU WAD IoU
Independent 8.4399 0.9351 25.7543 0.7423

Cascade 8.4986 0.9343 16.0567 0.8543
Multi-task 7.4410 0.9685 13.5452 0.9002

Table 4: Comparison of three different LSNet designs in terms of
accuracy of centerline extraction and junction detection. For WAD
lower is better, while for IoU higher is better. Our multi-task design
significantly outperforms the other two designs.

(a) Centerline Image (b) Result w/o TRNet (c) Result w/ TRNet

Figure 13: Vectorization results without and with TRNet. (a) Cen-
terline image generated by LSNet; (b) Vectorization without uti-
lizing topology reconstructed by TRNet; Connectivity at junctions
cannot be correctly reconstructed. (c) Vectorization with topology
reconstructed by TRNet; The long and smooth curves can be cor-
rectly traced due to reconstructed connectivity at junctions.

junction detection simultaneously because of their close relation.
To further estimate the effectiveness of such multi-task network,
we also compare our proposed method with two other possible de-
signs: independent networks and cascade networks. Independent
networks tackle these two tasks separately by training two networks
with their own training datasets. During testing, the two networks
do not rely on each other. On the other side, the cascade network
first extracts centerline from the given input and then detects junc-
tions regarding centerline image as input and the two sub-networks
are jointly trained. We evaluate the previously mentioned WAD and
IoU metrics in equation 3 and 4 of centerline extraction and junc-
tion detection on these three designs, and the statistics are listed in
Table 4. Our proposed multi-task design outperforms the other two
designs probably because our design the two tasks share the same
set of local features, making more reliable predictions.

Importance of Topology Reconstruction. Our topology recon-
struction resolves the ambiguity at junctions. The reconstructed
topology is utilized to trace the curves. To demonstrate the impor-
tance of topology reconstruction, we disable topology reconstruc-
tion and directly conduct curve tracing on centerlines. Given an ac-
curate centerline image illustrated in Figure 13(a), Figure 13(b) is
the vectorization result without utilizing the topology reconstructed
by TRNet. The vectorization is not satisfying as the connectivity at
junctions is not correctly reconstructed, and a complete long curve
is regarded as multiple short segments. In sharp contrast, as illus-
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trated in Figure 13(c), the long, smooth curves can be correctly
traced with the topology reconstructed by our TRNet.

Image size LSNet Overall Topology Spline Fitting
Conduction

256×256 0.098 0.118 1.128
512×512 0.312 0.154 1.505

1024×1024 1.03 0.262 2.184

Table 5: Timing statistics (in seconds).

4.5. Timing Statistics

We tested our method on a PC with an Intel i7-6700K @ 4.0GHz
CPU, 32GB RAM, and a single NVIDIA TITAN V GPU. The run-
ning time statistics is composed of two parts. We tested the run-
ning time of LSNet, overall topology conduction, and spline fitting
for images with three different resolutions. For each resolution, we
tested 100 images and calculated the average running time. The re-
sults are listed in Table 5. Also, we tested 500 junction patches for
the TRNet, and the average running time is 0.021 seconds. As most
of the work is done by neural networks, the computational speed is
much quicker. At the end of our method, we applied some procedu-
ral algorithms to do overall topology conduction and spline fitting.
The execution speed is also acceptable.

In sharp contrast, as traditional topology analyzing methods
rely on iterative optimization, they are computationally expensive.
In particular, both Noris’s method [NHS∗13] and Bessmeltsev’s
method [BS19] take dozens of seconds to process a 1024× 1024
sketch. Favreau’s method [FLB16] even needs several minutes to
vectorize a single 1024× 1024 image. In the segmentation step,
Kim’s method [KWÖG18] takes around 5 minutes for an 128×128
image, and it fails to process high-resolution images.

(a) Original Sketch (b) Simplification (c) Vectorization

Figure 14: When the input is noisy, we can first conduct line sim-
plication with Simo-Serra’s method [SSISI16], and then vector-
ized the simplified lines with our proposed method. (a) Noisy input
line drawing image; (b) Simplified lines by Simo-Serra’s method
[SSISI16]; (c) Vectorization result with our method.

4.6. As Post-processing Step

Our method can also work as a postprocessing step of other raster
line drawing processing tools. In particular, a fuzzy raster line
drawing can be simplified with Simo-Serra’s method [SSISI16]
generating a clean line drawing. Then we use our method to vector-
ize the simplified result. Figure 14 illustrates an example of com-
bining Simo-Serra’s method and our method to vectorize a scanned

(a) r = 10% (b) r = 20% (c) r = 30% (d) r = 40%

Figure 15: Results of images with Gaussian noise. From the first
row to the last row are input images, centerline images, junction
images and vectorization results. Note that r represents the ratio of
the standard deviation of the Gaussian noise versus that of image
values.

(a) (b) (c) (d)

Figure 16: Results of sketchy images. From the left to the right
are input images(a), centerline images (b), junction images (c) and
vectorization results (d).

pencil drawing that contains noise. Our vectorization results (Fig-
ure 14(c)) are faithful to both the clean line drawings (Figure 14(b))
and the scanned pencil drawings (Figure 14(a)).

4.7. Limitation and Discussion

One of the limitations is that our method is sensitive to image
noises. It comes from our assumption that all the input raster im-
ages are noise-free so the background of the data is all clean and
white. Those abnormal noises will lead to unexpected gradient
changes which will greatly harm the accuracy of junction detec-
tion of our LSNet. In Figure 15, we show the results on the input
images with increasing levels of Gaussian noises. As can be seen in
the third row in Figure 15, our proposed LSNet fails to detect junc-
tions even with only 10% Gaussian noise. Therefore, TRNet fails to
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reconstruct the topology with inaccurate junction candidates. And
it greatly affects our final vectorization results. A workaround is
to apply an image smoothing with thresholding to make to back-
ground clear before feeding the input image into our network.

We also show the results of the input images with rough and
coarse sketches in Figure 16. Such sketchy images usually use
multiple lines with severe overlap to describe a single line. How-
ever, the goal of our proposed network is to distinguish every sin-
gle stroke and junction. And our proposed method does not em-
bed any stroke simplification mechanism. That is the reason why
lines in our vectorization results of such images are fragile. To ob-
tain a cleaner and better vectorization result, we can apply a post-
processing step of stroke simplification that we have mentioned in
Section. 4.6.

Currently, our LSNet and TRNet are separately trained, such that
the two networks cannot be optimized for each other. It may slightly
affect the accuracy of our vectorization results.

5. Conclusion

We propose a two-phase method to accurately vectorize line draw-
ings. In the first phase, we subdivide the lines into partial curves
via centerline extraction and junction detection. Then, in the sec-
ond phase, we reconstruct the topology at each junction. The over-
all topology generated by the two phases can be directly utilized
to trace and vectorize the lines. Thanks to our topology reconstruc-
tion, we can get visually better topology reconstruction accuracy
comparing to the existing methods. As our core parts are imple-
mented with CNN and can be accelerated by GPU, our method can
process high-resolution images in a fast computational speed.

A possible future direction is to realize all the parts of our
method with CNN. In this way, all the networks can be jointly op-
timized, such that the vectorization process will not only be more
robust but also achieve faster speed and higher accuracy.
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(a) Input (c) [Bessmeltsev et al. 2019] (d) our results(b) [Favreau et al. 2016]
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Figure 17: Vectorization results on high-resolution line drawings. The resolution of all input images is 1024×1024.
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