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Diabetic retinopathy, age-related macular degeneration and glaucoma, are the leading causes of visual
impairment or blindness of the population across different ages. Retinal fundus imaging is a clinically
regular tool for the diagnosis of retinal diseases. In the interest of having a comprehensive understanding
of the fundus condition, it is valuable to leverage multiple fundus images from different modalities.
However, a direct fusion of the multi-source fundus images eases to mis-align the physiological structure
or spatial position due to possible eyeball rotations or head movements. The problem turns out to be
more severe if the images were corrupted by ill conditions on eyes, such as micro-bleeding and plaques.
To tackle this problem, we propose a multi-source registration model for retinal fundus images. Our pro-
posed method considers multiple correspondences and dual structural constraints during the registration
process. The method firstly selects adequate feature points by an adjustable threshold selection strategy.
Then a feature-guided correspondence estimation model is established to build complementary features.
Finally, their spatial transformation is built by using mean shift evolution. The evolution is guided by
Tikhonov regularization on dual geometric structures. It overcomes the mess of mean shift vector field
and mitigating the ill-posed displacement in field recovery. We have conducted our method on the col-
lected 220 multi-source retinal fundus image pairs, which involve minor and larger displacement or sev-
ere retinopathy lesions, as well as additive different intensities of Gaussian noises. Extensive experiments
demonstrate that the proposed method consistently outperforms seven feature-based methods.

� 2021 Published by Elsevier B.V.
1. Introduction

Fundus images are crucial for clinical diagnosis in ophthalmol-
ogy. Retinal fundus images have always been the focus of clinicians
because the pathological changes often reveal the occurrence of
systematic diseases such as hypertension, diabetes, certain blood
diseases, and central nervous system diseases [1]. And the deep
microvascular can be observed non-invasively and directly
through the retina. Therefore, an effective quantitative analysis
tool of retinal images can guide the following clinical decisions
and applications such as early detection, diagnosis and treatment
of diseases. Currently, various types of equipment have been devel-
oped to generate different sources/modalities retinal images with
different highlighted tissues, such as optical coherence tomogra-
phy (OCT), color fundus photography (CFP) and fluorescent angiog-
raphy (FA) [2]. For example shown in Fig. 1, the blood vessels in
Fig. 1 (A) demonstrate higher intensity than the background tissue,
while the blood vessels in Fig. 1 (B) are darker. It is worth obtaining
comprehensive spatial information and exploit various sources/-
modalities knowledge on the same tissue/region images. Broadly,
image registration is a vital step for multi-source image processing
(e.g., fusion). However, ill-conditioned imaging, such as misalign-
ment, rotation or even blurry effects, may be introduced due to
the eyeball or head movements. Such drawbacks lay great obsta-
cles for accurate image registration, hindered its clinical diagnosis.

Image registration aims to align two or more images captured
by multiple viewpoints, modalities or times. Conventional
approaches [3,4] leverage the locally similar anchor pairs and opti-
mize the alignment process. Feature-based approaches [5] extract
various descriptive features on the images and build a transforma-
tion function to minimize the feature similarity among different
modalities/times/viewpoints. However, existing methods perform
unsatisfactory results in retinal image registration for ill-
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Fig. 1. Three pairs of multi-source retinal fundus images with different severity of
eye conditions. (A) and (B) are collected from FA and CFP, respectively.
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conditioned samples, such as severer spatial deformations, or
appearing of micro-bleeding and plaques [6]. Recently, deep learn-
ing has demonstrated its merits of powerful feature representation
[7,8]. Although deep learning approaches achieve outstanding per-
formance, learning-based models require large among of training
data.

Multi-source retinal image registration still suffers from the fol-
lowing challenges due to nonuniform contrast/intensity distribu-
tions, large homogeneous nonvascular/textureless regions,
various pathology-caused degradations, and limited overlaps with
few feature correspondences/matches. To address these chal-
lenges, we propose a multi-source retinal fundus image registra-
tion with feature-guided and dual structural constraints. The
proposed method considers deformation recovery as a problem
of clustering the kernel center to the target point set of arbitrary
shapes. The major contributions of this paper are threefold:

� an adjustable threshold selection strategy is applied in feature
points extraction to select the inliers for maximizing the usage
of feature points;

� a multiple correspondences estimation model is established to
form complementary features for enhancing the recognition of
feature points;

� a spatial transformation is built by mean shift evolution, which
is guided by the Tikhonov regularization on dual geometric
structures. The transformation is shown to be capable of over-
coming the mess of mean shift vector field and mitigating the
ill-posed problem of displacement field recovery.

The rest of the paper is organized as follows. Related works are
reviewed in Section 2. The method proposed to achieve retinal fun-
dus fusion via automatic image registration is elaborated in Sec-
tion 3. Extensive experiments are conducted in Section 4 to
evaluate the effectiveness and robustness of the proposed method.
Section 5 summarizes the discussion and conclusion of this paper.
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2. Related work

The popular registration methods for retinal fundus images can
be divided into two categorizes: (1) learning-based registration
methods; and (2) conventional registration methods [9].
2.1. Learning-based registration method

There are few works using deep learning to handle image regis-
tration for retinal fundus images, even learning-based methods
have achieved powerful performance in image classification and
segmentation [10]. Mahapatra et al. [11] introduced an end-to-
end deep learning method regarding retinal fundus images. The
method utilizes the generative adversarial networks to finish the
process of registration. Zou et al. [12] proposed an unsupervised
structure-driven regression learning method. This approach first
describes the complex mapping as a parameterized deformation
function, and then calculates multi-scale similarity in combination
with the contextual structures. These methods adopt the synthetic
data or image augmentation method to augment the training data
set, which are problem specific, and may lack robustness to multi-
site or multi-source images. Recently, Lee et al. [13] presented a
feature-based learning method for multi-modality retinal fundus
images. This method first learns a deep representation that is built
on a convolutional neural network, and then employs the conven-
tional approach to complete the registration process. Wang et al.
[14] introduced a content-adaptive weakly-supervised deep learn-
ing framework, which integrates the strategies of vessel segmenta-
tion, feature detection and outlier rejection. Although the deep
features can learn more high-level features, the understanding of
them may be inadequate and uncontrollable.
2.2. Conventional registration method

Most conventional image registration methods are generally
divided into two categories: area-based methods and feature-
based methods. The latter is not affected by intensity and rotation,
and has less computational complexity and higher efficiency.
Therefore, we focus on feature-based registration methods, which
generally consist of three essential steps. The first step focuses
on extracting a sufficient number of feature points from the refer-
ence image and the sensed image. The popular image descriptors,
including scale-invariant feature transform (SIFT) [15], edge ori-
ented histogram-scale invariant feature transform (EOH-SIFT)
[16], and speeded up robust features (SURF) [17] are widely
applied in retinal image registration [18]. The second step aims
to align the feature point sets from different sources, times and
viewpoints, thereby achieving correspondence estimation and
transformation updating [9]. There are many different methods
developed for it. Myronenko and Song [19] introduced a probabilis-
tic method, called by coherent point drift (CPD) algorithm, which
utilizes Euclidean distance to evaluate the correspondence
between point sets and applies an additional uniform distribution
for outlier modeling. Yang et al. [20] exploited both global and
local mixture distance (GLMDTPS) features to improve the feature
description for point set registration, and then proposed a multi-
feature-based finite mixture model on combining SIFT with differ-
ent types of geometrical features [21]. Recently, Ma et al. [22] pro-
posed a non-rigid point set registration method by preserving
global and local structures (PR-GLS) based on CPD. It first employs
shape context [23] for feature point sets correspondence estima-
tion and then assigns a priori probability manually according to
the correspondence for the guide of solving the posterior probabil-
ity function of the Gaussian mixture model. Subsequently, the
authors applied this method to retinal image registration [24,25].



Table 1
List of notations used throughout the paper.

Notation Remark

IR , IS , It
0 the reference image, sensed image

and transformed image

S ¼ fsngNn¼1, the feature point sets extracted from

T ¼ ftmgMm¼1 IR and IS

M, N the number of points in T and S,
satisfied N 6 M

sn , tm the n-th and m-th points in S and T
u0 the lowest threshold for extracting a large number

of SIFT feature candidates in IR and IS

u� the highest threshold for extracting more reliable
inliers

u the adjustable threshold changed from u0 to u�

via a step size ‘ during registration
T the recovered transformation in every iter iteration
CE the correspondence probability matrix between S

and T
1 the column vector with all ones
I the identity matrix
0 the zero matrix
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Wang et al. [26] introduced a robust multimodal retinal image
registration framework (called SURF-PIIFD-RPM), which is quite
robust to outliers by using the partial intensity invariant feature
descriptor. Similar to SURF-PIIFD-RPM, an adaptive mismatches
removing registration method (called URSIFT-RIIFD-AGMM) is pro-
posed [27]. Its superiority can mostly be attributed to the robust
initial point matching and matching postprocessing. After that, Bi
et al. [18] proposed a multiple image features-based retinal image
registration method (called MIF-RIRM in short), which uses multi-
ple image features to estimate the correspondence of feature point
sets, and then the global and local geometric structure constraints
to control the transformation updating step. The last step is image
registration/transformation, which aims at aligning the sensed
image onto the reference image using the backward approach
[21], and obtain the transformed image. These conventional ways
increase the interpretability of the method, which are easy to
understand, and have the robustness to multi-source data, as well
as do not need a large number of samples for training.

3. Method

This section describes the proposed method for retinal fundus
image registration. A feature point extraction scheme is firstly
introduced to yield quite reliable inliers. Then a multiple feature
extraction scheme is introduced to characterize each feature point
comprehensively. Accordingly, we consider the deformation recov-
ery as a problem of matching the kernel center to a target point set
with arbitrary shapes. Therefore, a feature point matching method
is proposed to guide the matching deformation, regulated by global
and local geometric structures. The backward approach [21] is uti-
lized to obtain the transformation for image registration. Finally,
the implementation details of the proposed method are provided.
The flowchart of the proposed method is illustrated in Fig. 2.

Specifically, the notations used throughout this paper is sum-
marized in Table 1 for ease of explanation.

3.1. Feature point extraction

The emphasis in processing multi-source fundus images is to
overcome the interference of a large number of outliers caused
by non-rigid distortions (such as lesions) and rotations (i.e., low-
overlap images). SIFT algorithm [15] that achieved excellent
Fig. 2. The flowchart of the fully automatic mul
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accuracy is employed to extract the feature points with scale and
intensity invariance. However, the standard SIFT algorithm per-
forms a feature matching before having the candidate feature
points. The matching abandons a large number of feature points.
To fully utilize all the feature points, an adjustable threshold selec-
tion strategy is employed. At the beginning of the iteration, a low
threshold of u0 is used for a wider range of feature candidates.
In the following iterations, the threshold will gradually increase
by u ¼ uþ ‘ to win more reliable inliers until it reaches a reliable
threshold of u�. By this strategy, more feature candidates are
allowed to involve and contribute to the feature matching. The
inliers can decide the overall transformation and the relevant out-
liers can be utilized to optimize the registration accuracy. Fig. 3
illustrates the comparison between fixed and adjustable threshold
registration results.

Herein, the coordinates of extracted points are recorded as

P ¼ fpzg
Z
z¼1 from every image, where z is the number of extracted

points. Accordingly, the source point set S ¼ fsngNn¼1 and the target

point set T ¼ ftmgMm¼1 are extracted from the sensed and reference
images acquired by different imaging modalities, respectively.
ti-source retinal fundus image registration.



Fig. 3. Comparison results of the fixed (i) and adjustable (ii) threshold strategy on registration performance. From the second to the sixth columns, each block from top to
bottom successively demonstrates: the initial pose of two feature point sets, the middle of feature point set registration, the final result of feature point set registration, the
final image registration results and the enlarged exhibits of green rectangles. The orange and blue dots (crosses) denote the inliers (outliers) in two feature point sets,
respectively. The orange grids (orange dotted lines) and the blue grids (blue solid lines) denote the original image field and the warped image field, respectively. For visual
comparison, the image registration result (i.e., the transformed image) for each scenario is shown with the reference image by a 10� 10 checkboard, where the registration
errors are highlighted using the green arrows.
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3.2. Feature characterization

Given the feature candidates extracted from the reference (tar-
get) and sensed (source) images, we measure their similarities by
comparing both shape and textural features.

3.2.1. Measuring the matchness by shape context feature
For the shape similarity measurement, we apply shape context

(SC) [23] to characterize the shape of each feature candidate. SC is
originally designed as a shape descriptor which describes the spa-
tial distribution of a shape in the log-polar diagram. It firstly sets
up a polar coordinate system centered at each point and then con-
structs Ra concentric circles along the radial direction such that all
the circles share Ta bins in the tangential direction. Therefore, the
entire polar coordinate system has B ¼ Ra� Ta bins. The number of
points falling into different bins is counted and forms a histogram

fhðr; tÞgRa;Tar¼1;t¼1. Finally, a v2-distribution is utilized to measure the
difference between the source point sn and the target point tm,
denoted by a matrix SC.
Fig. 4. Four different counting strategies. (i) is the central bin with coordinate (r; t), whic
soft counting strategies. The intensity of the each bin indicates the weight of contributi
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SCðm;nÞ ¼ 1
2

XRa
r¼1

XTa
t¼1

hsn ðr; tÞ � htm ðr; tÞ½ �2

hsn ðr; tÞ þ htm ðr; tÞ
ð1Þ

Since the original design of SC only considers the points drop into
each specific bin. It is sensitive to the local structure deformations
introduced by themovements of organs or tissues. To alleviate such
a problem, we conduct shape context descriptor by considering not
only the points in the current bin but also in the neighbor ones, with
an elliptic Gaussian soft counting strategy [28]. Fig. 4 visualizes the
detail of this strategy. Fig. 4 (i) is the original SC and Fig. 4 (ii)–(iv) are
three different counting strategies. As we can see, the neighbor bins
also contribute to the central bin and the intensity of each bin indi-
cates the weight of the contribution. This counting strategy can
increase the tolerance of the deformation.

Let hðr; tÞ be the central bin, which is the integer statistical
value obtained by the counting strategy of the original shape con-
text. Let qr and qt be the range of radial and tangential directions,
respectively. The contribution of each neighbor bin is controlled by
a two-dimensional elliptic Gaussian. The re-calculated central bin

ĥðr; tÞ can be obtained by the following equation:
h is the original shape context. (ii), (iii) and (iv) demonstrate the elliptical Gaussian
on.
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ĥðr; tÞ ¼
Xqr

i¼�qr

Xqt

j¼�qt

hðr þ i; t þ jÞ

� exp � i2

ð2qr þ 1Þ2
þ j2

ð2qt þ 1Þ2

" # !
ð2Þ

The shape similarity measurement of Eq. (2) is rewritten as
follows:

SCmn ¼ ĥsn � ĥtm

��� ���2 ð3Þ
3.2.2. Measuring the matchness by texture feature
Texture feature has been widely used in the detection and

recognition tasks of fundus images [29,30]. The dominant rotated
local binary pattern [31] is thereby selected to represent the tex-
ture feature. For a gray-scale retinal image IX�Y , the binary pattern
feature describes the statistics of the difference distribution for
gray values between the center point and the neighborhood points.

It is defined as BPxy ¼
PL�1

l¼0 2
modðl�D;LÞgðiðx; yÞ; iðalðxÞ; blðyÞÞÞ, where

ðalðxÞ; blðyÞÞ denotes the coordinate of the lth point around the cen-
ter point of ðx; yÞ, and are defined as alðxÞ ¼ xþ Rcosð2pl=LÞ and
blðyÞ ¼ y� Rsinð2pl=LÞ;D is called the dominant direction and
defined as the index of the neighboring pixel whose difference
from the central pixel is maximum, i.e.,
D ¼ argmaxl2f0;1;...;L�1gjiðalðxÞ; blðyÞÞ � iðx; yÞj; ið�Þ is gray value of a
coordinate, R is the radius of the circle, L is the number of neigh-
bors on the circumference, modð�Þ represents the modulo opera-
tion. The function gð�Þ defines the binary attributes of
neighborhood points, if iðalðxÞ; blðyÞÞ P iðx; yÞ then gð�Þ ¼ 1, other-
wise 0. The computed local binary pattern describes the rotation-
invariant texture feature since the value of the weight term

2modðl�D;LÞ is solely determined by D. To obtain stable features, the
original image is firstly weighted before extracting the texture fea-

ture Izðx; yÞ ¼ ezxy � Iðx; yÞ, where ezxy ¼ expð� Ixy�pzk k2

2s2 Þ, the feature
recognition can be enhanced by adjusting s according to the
selected images. When the weighted image pixel Izðx; yÞ <¼ d,
the value is set as 0, where d is freely defined according to the
object. Finally, the texture feature of each feature point is calcu-
lated by

TFðpzÞ ¼ DHR;LðBPIz

R;LÞ ð4Þ

where DHð�Þ represents the statistics of the distribution histogram.
Accordingly, the extracted texture feature from the reference and
sensed images are TFtm and TFsn , respectively. The difference in tex-
ture feature TFmn between the source and target points can be eval-
uated by

TFmn ¼ TFsn � TFtmk k2 ð5Þ
3.3. Building the matching mapping for the feature candidates

After extracting multiple features, our goal shifts to find corre-
sponding feature candidates among different sources images, and
then establish their transformation T . We decompose the main
task of the feature-based registration method into two sub-tasks:
correspondence estimation and transformation updating. These
two sub-tasks are executed alternatively and iteratively until it
reaches a steady state. To this end, the Expectation–Maximization
(EM) algorithm is employed to solve T , which includes two alter-
nating steps:
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� Expectation step (E-step): guessing the values of parameters
(‘‘old” parameter values estimated in the previous iteration)
used to compute posterior probability distributions of mixture
components based Bayes rule (computation of CE);

� Maximization step (M-step): computing the ‘‘new” parameter
values via minimizing the expectation of the complete negative
log-likelihood function.

These two steps of EM algorithm correspond to the above two
sub-tasks.

Sub-task 1: correspondence estimation
We consider the deformation recovery as a problem of cluster-

ing the kernel center to the target point set of arbitrary shapes. To
this end, we first estimate the probability density distribution on
target point set.

PDFðxÞ ¼ 1
M

XM
m¼1

1ffiffiffiffiffiffiffi
2p

p
r

exp � x� tmk k2

2r2

" #
ð6Þ

where r is the bandwidth of Gaussian kernel. Analogous to the clas-
sic mean shift algorithm [32], we consider the source point sn as the
center of kernel and iteratively searches for the matched target
points in the target point set ftmgMm¼1. Afterwards, the gradient of
each source point as:

GradðsnÞ ¼
PM

m¼1Umn

Mr2

PM
m¼1UmntmPM
m¼1Umn

� sn

" #
ð7Þ

where Umn ¼ 1ffiffiffiffi
2p

p
r exp � sn�tmk k2

2r2

h i
and the value in bracket denotes

the normalized probability density gradient (aka. mean shift vec-
tor). The shift direction always points to the direction in which
the probability density increases fastest, and its step size is propor-
tional to the gradient probability density. Essentially, it is a gradient
ascent algorithm with adaptive step. In mean shift algorithm, this
vector is set as the displacement vector of point sn in the process

of searching corresponding target points. The item
PM

m¼1
UmntmPM

m¼1
Umn

is the

centroid (i.e., center of mass) of kernel determined by r. Whereas,
in the application of retinal image registration, there are differences
in the appearance of retinal images from different image modalities,
the extracted feature points inevitably contain a certain proportion
of outliers. Let its proportion in the target point set bex, and it con-
forms to uniform distribution Uð0;MÞ. Thus the centroid of inliers
determined by x and r as

ŝn ¼ ð1�xÞ
PM

m¼1Umntm
ð1�xÞ

PM
m¼1Umn þ x

M

ð8Þ

Herein, each feature point also has texture feature and shape
context feature. Thereby, the product of two radially symmetric
Gaussian kernels is employed to define the multivariate kernels
[32]

Hmn ¼ 1
2prb

exp � SCmn

2r2 þ TFmn

2b2

� �� �
ð9Þ

where r2 and b2 are affect bandwidths of the two kernels in their
feature spaces, respectively. SCmn þ TFmn is called multiple features,
which effectively merges texture and geometric structure informa-
tion to enhance the recognition of feature points and the reliability
of correspondence estimation under the interference of a large
number of outliers. Therefore, the single kernel in Eq. (8) is replaced
by multivariate kernels H.

ŝn ¼ ð1�xÞ
PM

m¼1Hmntm
ð1�xÞ

PM
m¼1Hmn þ x

M

ð10Þ
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The posterior probability matrix CE (E-step) of point ŝn in each
iteration is estimated via Bayes law as

CEmn ¼ ð1�xÞ
PM

m¼1Hmn

ð1�xÞ
PM

m¼1Hmn þ x
M

ð11Þ

Sub-task 2: Transformation updating
Assuming that the source point set fsngNn¼1 can be mapped

point-wisely to the target point set ftmgMm¼1 via spatial deformation
T . The transformation mapping for the alignment is dependent by
an implicit variable # ¼ fT ;r2g. For non-rigid deformation, the
mapping T has infinite possibilities, and thus resulting the dis-
placement field recovery be ill-posed. By the motion coherent the-
orem, the mapping T is smoothing such that for the closing points,
they are moving to have the same displacement. The spatial trans-
formation T is penalized by l2-norm, GðT Þ ¼ Tk k22, to preserve glo-
bal motion consistency.

Additionally, it is hoped that these controlled inliers ŝn can thus
be close to their corresponding points T ðsn), and correspondingly
drag the outliers around them, resulting in the latter drifts are scat-
tered in a reasonable position. To this end, the dual geometric con-
straints are built to overcome over regularization caused by a
strong global deformation G, as well as preventing over-fitting
caused by local over-constraint,

RðT Þ ¼ k
2

XN
n¼1

ŝn � T ðsnÞk k22 þ
g
2
GðT Þ ð12Þ

According to Riesz representation theorem, non-rigid space
transformation can be defined in reproducing kernel Hilbert space
uniquely determined by Gaussian radial basis function. The kernel
function is defined by using the Gram matrix composed of the spa-

tial coordinates of the matrix. Cn1n2 ¼ expð� 1
2/2 sn1 � sn2
�� ��2Þ, where

n1;n2 2 ½1;N�, and the constant / controls the degree of spatial
smoothness. Therefore, the non-rigid transformation function is
formed as

T ðSÞ ¼ Sþ CW ð13Þ

where C is a M �M-dimensional positive definite matrix, W is the
N � 2-dimensional deformation coefficient matrix.

A reliable displacement direction yields a large expectation of
probabilities on account of the probability density function. After
that, the solution of the transformation updating is obtained by
maximizing a likelihood function, or equivalent to minimizing
the negative log-likelihood function. It is formulated as:

Qð#Þ ¼ �
XM
m¼1

ln ð1�xÞ
XN
n¼1

1
N
Hmn þ

x
M

" #
�RðT Þ ð14Þ

Taking the upper bound of the energy function (14) and ignor-
ing the irrelevant terms of #, the posterior expectation of the
complete-data log-likelihood is obtained via Jensen’s inequality.
Therefore, the maximization step (M-step) is achieved by minimiz-
ing the logarithmic posterior of the complete-data log-likelihood.
The energy function is rewritten as

QðW;r2;xÞ ¼ 1
2r2

XM
m¼1

XN
n¼1

CEmn T� ðSþ CWÞn
�� ��2 þ k

2
trðSS0Þ

þ g
2
trðW 0CWÞ þ Ulogr2 þ Ulogð1�xÞ þ ðM

� UÞlogx ð15Þ

where S ¼ CE � T� ðSþ CWÞ, U ¼
PM

m¼1

PN
n¼1CEmn 6 N (with U ¼ N

only if x ¼ 0). The deformation coefficient can be obtained by par-
tial derivation.
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W ¼ ðdðCE1ÞCþ gr2Iþ kr2CÞ�1ðCE � T� dðCE1ÞSþ kr2ðCE
� T� SÞÞ ð16Þ

where dð�Þ refers to matrix diagonalization. Similarly, r2 and x are
obtained by

r2 ¼ trðT0dðCE01ÞTÞ�2trðT ðSÞ0CE�TÞ
U þ trðT ðSÞ0dðCE1ÞT ðSÞÞ

U

x ¼ 1� U
M

ð17Þ

Subsequently, the obtainedW;r2 andx are substituted into the
next iteration. The coordinates of transformed point set S� are
updated by T ðSÞ. Until the maximum number of iterations is
reached or Eq. (15) converges, the point set registration is com-
pleted and the transformed feature source point set S� is obtained.
3.4. Image registration

After obtaining a reliable correspondence X� ¼ fS; S�g, we are
left to realize image registration via the correspondence. This study
hopes that all inliers will not be disturbed by outliers and are pre-
cisely aligned with each other, while the outliers can be drifted to a
reasonable position accordingly, exactly making the non-
overlapping area of the grid image spread out well for guiding
the resampling of the sensed image IS. The backward approach is
utilized to build image transformation based on the thin-plate
splines (TPS) [21]. The detail of the image transformation is intro-

duced in [4], which can obtain the transformed image It
0
.

Ultimately, the fusion of multi-source fundus images is a
breeze, we can directly superimpose the reference and trans-
formed images to obtain the fusion image.
3.5. Implementation details

3.5.1. Parameter setting

� the current number of iterations iter is initially set as 1 and
incremented by 1 each time the iteration is executed, the max-
imum number of iterations itermax � 60;

� the initial thresholdu0 and the reliable thresholdu� are set to 1
and 2; the step parameter ‘ ¼ ð1:8� 1:2Þ=ðitermax=pÞ, 1.8 and 1.2
are two moderate thresholds, where 1.8 is a good threshold
with 95% inlier rate, 1.2 is a suitable threshold with 50% inlier
rate; p is the period of the adjustable threshold update and
set to 5;

� the values of Ra and Ta in shape context feature are set as 12
and 5 [33]; qr and qt are set as 1 and 1 [28];

� the radius R and neighbor points L of local binary pattern are set
as 1 and 8 respectively;

� the bandwidth bis adjusted by the deterministic annealing

scheme, i.e., b ¼ e
1
J , where the temperature parameter

J ¼ � iter
5 ;

� the smoothing parameter / is set to 2;
� the regularization coefficients k and g are initially set to 2 and 3,

updated by k ¼ Bk;g ¼ Bg, where B ¼ ðiter4max�iterþ1Þ
1=144

itermax
;

� the deformation parameterW and the outlier weighting param-
eter x are initially set to 0 and 5, and then updated by Eqs. (16)
and (17).

3.5.2. Algorithm pseudocode
The proposed algorithm is summarized by pseudocode, as

shown in Algorithm 1.
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4. Experiments and results

4.1. Dataset and experimental setting

The performance of the proposed method is conducted on three
types of data: (i) 100 multi-source retinal fundus image pairs with
minor displacement (named Data i); (ii) 100 multi-source retinal
fundus image pairs with larger displacement or severe retinopathy
lesions (Data ii); (iii) 20 image pairs involve a deliberate image
impairment with additive different levels of Gaussian noises (Data
iii). The resolutions of each image in the dataset are from
378� 317 to 1703� 1785 and these image pairs suffer rather dif-
ferent intensity profiles.

We evaluate the performance of the proposed method via com-
paring against seven feature-based methods including CPD [19],
PR-GLS [22], GLMDTPS [20], MIF-RIRM [18], SIFT [15], SURF-
PIIFD-RPM [26] and URSIFT-PIIFD-AGMM [27], which use their
default parametric settings. The experiments are implemented in
MATLAB 2019a on a Desktop PC with a 3.60-GHz Intel Core CPU
and 16-GB RAM.
Table 2
Ablation study of different components. ‘U’ denotes that the correspond component appear
single constraint are used in each step of registration process, respectively.

Case Index 1 2 3

Component i U U �
Component ii U � U

Component iii � U U

RMSE 5.7673 8.6907 4.9708
MAE 7.4693 10.7707 6.2924
MEE 2.2442 5.0024 1.9154
STD 4.7139 5.928 5.529
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4.2. Evaluation criteria

To evaluate the registration results, a reliable and fair evalua-
tion criterion is required to measure the performance of the afore-
mentioned registration methods. Herein, we first manually select
the ground truth, which includes 10–15 point pairs (i.e., land-
marks) that are located in the obvious and easily identified places,
such as the intersection of blood vessels, macular, optic papilla or
the location of the lesion. Then, we calculate the Euclidean distance
between the target feature points in the reference image and the
corresponding feature points in the transformed image. Ultimately,
we compute the root mean squared error (RMSE), mean absolute
error (MAE), the median error (MEE) and the standard deviation
of distance (STD) between the aforementioned two point sets.
For their specific mathematical expressions, please refer to [33].

4.3. Ablation study

To verify the performance for each component of the proposed
method, an ablation study is conducted by 20 multi-source retinal
image pairs. Table 2 demonstrates the ablation investigation on the
s in the framework, ‘�’ denotes that the fixed threshold, single feature description and

4 5 6 7

U � � U

� U � U

� � U U

14.7796 11.346 12.5256 2.7430
18.2012 13.5176 16.8475 3.4014
4.4355 2.5016 3.0191 0.7044
15.6712 16.1125 17.2939 1.1317



Table 3
Experimental statistics on the two types of the data involving Data i and Data ii. Average values of RMSE, MAE, MEE, STD and Run times for eight methods including (a) our
method (b) CPD [19], (c) SIFT [15], (d) PR-GLS [22], (e) GLMDTPS [20], (f) MIF-RIRM [18], (g) SURF-PIIFD-RPM [26] and (h) URSIFT-PIIFD-AGMM [27]. Success rate [26] is recorded,
which denotes the percentage of successful image pairs registration (inaccuracy: MAE 610 and MEE > 1.5, acceptable: MAE 610 and MEE 61.5). The best performance is
highlighted in bold.

Method (a) (b) (c) (d) (e) (f) (g) (h)

Data i RMSE 2.09 9.58 24.93 5.41 19.06 24.88 4.64 5.95
MAE 2.44 12.26 32.39 6.83 23.50 31.29 5.86 7.34
MEE 0.98 4.19 6.64 1.64 6.67 5.29 1.40 2.15
STD 1.48 8.02 17.55 4.37 11.47 8.61 2.55 4.03
Success rate 96% 68% 23% 82% 29% 75% 94% 91%
Runtime (s) 3.72 0.63 0.61 11.45 1.05 1.64 7.98 7.62

Data ii RMSE 4.85 12.07 76.91 15.82 28.15 29.72 4.93 7.24
MAE 5.91 13.79 90.46 20.23 35.43 36.47 6.09 8.91
MEE 1.61 4.34 25.38 5.30 8.08 9.14 1.77 3.10
STD 4.51 8.55 14.08 9.13 12.88 14.96 3.25 6.36
Success rate 91% 41% 7% 69% 17% 61% 93% 88%
Runtime (s) 4.38 0.69 0.69 19.31 1.35 1.84 8.67 10.85

Fig. 5. Image registration results on four typical multi-source retinal fundus image pairs with a minor displacement among different sources. (a) our method (b) CPD [19], (c)
SIFT [15], (d) PR-GLS [22], (e) GLMDTPS [20], (f) MIF-RIRM [18], (g) SURF-PIIFD-RPM [26] and (h) URSIFT-PIIFD-AGMM [27]. S and R are the sensed images and reference
images, respectively. (i), (ii) and (iii) demonstrate the checkboard for alternately displaying the reference images and the transformed images, fusion images and transformed
images, respectively. The registration errors are highlighted using the red rectangles in the checkboard images.
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effects of the adjustable threshold selection strategy (component
i), the multiple correspondences estimation model (component
ii) and dual geometric structures constraints (component iii). First,
to prevent false inlier matches, component (i) is adopted for max-
imizing the number of reliable inliers and making reasonable use
of outliers as the number of iterations increases. Leveraging the
relevant feature outliers from the entire image can contribute to
the registration precision, since the extracted outlier pairs can be
utilized as control points in building image transformation, and
help to build a coarse to fine transformation. Second, the severe
non-rigid deformation occurs during fundus imaging, single fea-
ture descriptors or constraints cannot guarantee a perfect trans-
formed image, especially when one point is mismatched or
several points need to move in different directions. Therefore, com-
ponent (ii) and component (iii) are employed for improving the
performance of image registration. The existence of each compo-
nent is beneficial to improve the overall performance of registra-
tion, otherwise, using the fixed threshold, single feature and
single constraint will degrade performance.

4.4. Results on multi-source retinal fundus images

The experimental results on Data i are reported in the first row
Table 3. The intuitive results of four representative image pairs for
CPD [19], SIFT [15], PR-GLS [22], GLMDTPS [20], MIF-RIRM [18],
SURF-PIIFD-RPM [26], URSIFT-PIIFD-AGMM [27] and the proposed
method are illustrated in Fig. 5. Experimental results demonstrate
that the proposed method has excellent performance as well as the
three important components, including (i) adjustable threshold
selection strategy; (ii) multiple features; (iii) dual constraints, are
reasonable. SIFT without components (i, ii and iii) performs not
well and fails registration in most cases. It first uses a default
threshold to extract insufficient feature points and then employs
Fig. 6. Experiments on multi-source retinal fundus image registration with large displac
SURF-PIIFD-RPM [26] and (h) URSIFT-PIIFD-AGMM [27]. R and S denote the reference an
results, where the correctly preserved matches are denoted by green lines; the false
transformed images. and checkboard.
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the strategy of nearest-neighbors distance ration to perform fea-
ture matching. However, the extraction operation may erroneously
miss some inliers that are eliminated by the fast yet inaccurate
strategy. CPD without components (ii and iii) only uses a single
Euclidean distance feature to evaluate the one to many fuzzy cor-
respondences, which will make the initial angle deviation between
the source point set and the target point set at the beginning of
registration. GLMDTPS and PR-GLS all although use multiple fea-
tures to improve registration accuracy. GLMDTPS without compo-
nent (iii) does not model the outliers present in the image and is
sensitive to outliers, PR-GLS without component (iii) employs the
rotation invariant shape context and inconsistent optimization
processes to affect algorithm performance. MIF-RIRM without
component (i) performs better due to the use of multiple features
and dual constraints as well, the defect of the method is that the
number of feature points extracted is fixed, resulting in more dubi-
ous estimation in areas with large differences in appearance. SURF-
PIIFD-RPM and URSIFT-PIIFD-AGMM also perform promising,
although our three components are not included in their frame-
works, they use robust feature descriptors and conduct outliers
rejection. The small flaw of these two methods is that they may
not adequately utilize the image information due to a large num-
ber of outliers are removed.

The experimental results on Data ii are listed in the second row
of Table 3. The intuitive results of four typical image pairs for PR-
GLS [22], MIF-RIRM [18], SURF-PIIFD-RPM [26], URSIFT-PIIFD-
AGMM [27] and our method are demonstrated in Fig. 6. The reason
for choosing these four methods is that they performed better in
the previous experiment. As can be seen from Fig. 6, the proposed
method and SURF-PIIFD-RPM can generate quite a lot of correct
matches, and the alignment results are almost perfect, even in
the case of large-angle rotation or severe retinopathy. This can be
seen from the seams of vessels in the checkerboard images.
ement or severe retinopathy. (a) our method, (d) PR-GLS [22], (f) MIF-RIRM [18], (g)
d sensed images in row (i), respectively. The (ii) row displays the feature matching
preserved matches are denoted by red lines. The (A) and (B) columns show the



Fig. 7. Numerical results for Data iii with additive different levels (Level 1 to Level
6) of Gaussian noises.
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Whereas the methods of PR-GLS and MIF-RIRM completely fail on
most image pairs. URSIFT-PIIFD-AGMM seeks out relatively few
corresponding points since the large-angle rotation or severe
retinopathy, the performance is slightly worse than SURF-PIIFD-
RPM. These results also justify the reasonability of incorporating
multiple features, dual geometric structure constraints and the
adjustable threshold selection strategy in the formulation.

We added different scales of Gaussian white noises to each fun-
dus image for testing the robustness of the proposed method on
Data iii. Specifically, we conducted deliberate image impairment
and synthetically added noises with six levels (Level 1 to Level
Fig. 8. Two examples for multi-source retinal fundus image registration with additive dif
three rows, the top two rows are the images after adding Gaussian noises, the bottom o
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6). Level 1 to Level 6 denote that the variances of Gaussian noise
range from 0.01 to 0.1 in double steps. The numerical results of this
experiment are depicted in Fig. 7, and two visualization examples
are shown in Fig. 8. The experiment results indicate that our
method consistently outperforms the comparison methods that
are without adding Gaussian noises in most circumstances. It
implies that our method is insensitive to noise and can tolerate a
certain range of deliberate image impairment.

5. Discussion and conclusion

In this paper, a method for multi-source retinal fundus image
registration via feature-guided and dual structural preservation is
proposed. The method is demonstrated to achieve superior regis-
tration performance. The main merits of the method are summa-
rized as follow: (i) an adjustable threshold selection strategy; (ii)
a multiple correspondences estimation model and (iii) mean shift
and the Tikhonov regularization based dual geometric structure
constraints. In summary, the first merits provide sufficient and
reliable inliers for the successive steps, the correspondence estima-
tion provides a reliable correspondence matrix for the transforma-
tion updating, and the dual constraints pretty maintain the point
structure in the process of alignment for ensuring the point moves
in the right direction to achieve perfect alignment. The ablation
study further proves that each component plays an important role
in the whole image registration process, as evidenced by the signif-
icant difference after turning off either component. Compared to
the performances of the proposed method with the seven registra-
tion methods, the proposed method shows the considerable
performances.

However, our method exits some puny flaws, for instance, the
selected SIFT algorithm may not be an optimal feature exactor,
the selected features are not perhaps the most suitable feature
combinations. We can provide mentality and direction to meet
ferent levels (Level 1 (i) to Level 6 (vi)) of Gaussian noises. Each group is composed of
ne is the fusion image.
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some problems in the field. Furthermore, the proposed method is
designed for handling the retinal image registration problem,
which has the property of a few true feature correspondences
and high percentages of false correspondences. Therefore, the pro-
posed method can be applied to the monitoring of retinal diseases.
Specifically, when the acquired retinal images are taken at differ-
ent times or by different imaging modalities, the location of the
lesions can be marked after registration to assist doctors in treat-
ment to a large extend. In the future, we attempt to achieve the
three-dimensional reconstruction of retinal images via the fusion
images after accurate alignment of the image pairs for alleviating
the workload of clinicians.
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