
Neurocomputing 367 (2019) 346–356 

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

Age estimation via attribute-region association 

Yiliang Chen 

a , Shengfeng He 

a , ∗, Zichang Tan 

b , Chu Han 

c , Guoqiang Han 

a , Jing Qin 

d 

a School of Computer Science and Engineering, South China University of Technology, China 
b Institute of Automation, Chinese Academy of Sciences, China 
c Department of Computer Science and Engineering, the Chinese University of Hong Kong, China 
d Department of Nursing, the Hong Kong Polytechnic University, China 

a r t i c l e i n f o 

Article history: 

Received 18 December 2018 

Revised 28 April 2019 

Accepted 14 August 2019 

Available online 27 August 2019 

Communicated by Prof. Liu Guangcan 

Keywords: 

Age estimation 

Multi-task learning 

Attribute-region association 

a b s t r a c t 

Human age has been treated as an important biometric trait in many practical applications. In this pa- 

per, we propose an Attribute-Region Association Network (ARAN) to tackle the challenging age estimation 

problem. Instead of performing prediction from a global perspective, we delve into the relationship be- 

tween face attributes and regions. First, the proposed network is guided by the auxiliary demographic 

information, as different demographic information ( e.g. , gender and ethnicity) intrinsically correlates to 

human age. Second, different face components are separately handled and then involved in the proposed 

ensemble network, as these components vary differently along with human age. To explore both global 

and local information, the proposed network consists of several sub-network, each of them takes the 

global face and a face sub-region as input. Each sub-network leverages the intrinsic correlation between 

different face attributes ( i.e. , age, gender, and ethnicity), and it is trained in a multi-task manner. These 

attribute-region sub-networks are associated to yield the final predictions. To properly train and coordi- 

nate such a complex network, a new hierarchical-scheduling training method is proposed to balance the 

learning complexity in the multi-task learning. In this way, the performance of the most difficult task 

( i.e. , age estimation) can be significantly improved. Extensive experiments on the MORPH Album II and 

FG-NET show that the proposed method outperforms the state-of-the-art age estimation methods by a 

significant margin. In particular, for the challenging age estimation, the Mean Absolute Errors (MAE) are 

decreased to 2.51 years compared to the state-of-the-arts on the MORPH Album II dataset. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Human facial attributes are used as the biometric traits in many

applications. For example, age, gender, and ethnicity information

can be used for precise advertising, human computer interaction

(HCI), and security control. However, predicting facial attributes

suffers from different challenging factors like wrinkles, lighting or

occlusion, which makes it a difficult task even for a human. 

Early research [20] on age estimation of face image uses

handcrafted facial geometric features and facial wrinkles to clas-

sify children, teenage and old people. Due to the publicly avail-

able large scale age datasets like FG-NET [21] and MORPH Al-

bum II [26] , handcrafted features are replaced by learned feature

representations. 

Recently, regression based methods and ranking based methods

become popular and shown to be useful for improving the perfor-
∗ Corresponding author. 
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ance of age estimation. Regression based methods [8,24,27] usu-

lly adopt a loss function like L2 loss to penalize the differences

etween the predicted ages and the ground-truth. This kind of

ethod pays more attention to investigate attribution relationship

mong face images and age prediction. Differently, ranking based

ethods [2,3,6] regard the age value as a rank ordered data, and

tilize multiple binary classifiers to determine the rank of the age

n a face image. These methods focus on the ordinal relationship

mong face images with age values. 

The majority of the age estimation methods [7,30] focus on the

ge attribute of an input face image. However, other face attributes

eveal human age from various perspectives. For instance, gender

nd ethnicity attributes are closely related to ages, and our human

redict ages takes into account these two source of information. 

On the other hand, the correlation between the holistic face im-

ge and different face components is also useful for face attributes

stimation. For example, face aging process can be observed

rom the shape of face in childhood, while the aging process is

ore conspicuous in the skin of texture in adulthood. Therefore,

ace components reveal age information, and they should not be

https://doi.org/10.1016/j.neucom.2019.08.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.08.034&domain=pdf
mailto:hesfe@scut.edu.cn
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onsidered globally under the same criterion. Therefore, attribute-

orrelation based methods [16,18,31] are widely used to estimate

he exact age of the subject in a face image. 

In this paper, we aim to integrate different face attributes and

omponents in an end-to-end unified network for efficient and ac-

urate prediction. To this end, we propose an Attribute-Region As-

ociation Network (ARAN) to learn the correlation between these

wo additional information. First, our proposed network is guided

y the auxiliary demographic information such as gender and

thnicity. Second, different face im portant com ponents like eyes,

oses and mouths are utilized to explore the correlation between

he holistic face region and the local components. To properly train

uch a complex network, a new hierarchical-scheduling training

HST) method is proposed to balance the learning complexity in

he multi-task learning. The contributions of the proposed work

re summarized below: 

- A novel Attribute-Region Association Network (ARAN) and a hi-

erarchical scheduling-training (HST) methods are proposed for

age estimation, which simultaneously utilizes different face at-

tributes and components in unified network. 

- Extensive experimental results demonstrate that the proposed

framework is significantly better than the state-of-the-art

methods for age estimation, gender classification, and ethnicity

recognition on the MORPH Album II and FG-NET datasets. 

. Related Work 

Age estimation methods. Human face attributes estimation has

een explored for over 20 years. In the early research of age pre-

iction, geometry features [20,25] , e.g. , chin skin wrinkles, nose or

ye, are usually used to predict the range of human age ( i.e. , child,

oung or senior adult). Then, some methods, such as AGing Pat-

Ern Subspace (AGES) [11] , Biologically Inspired Features (BIF) [17] ,

IF + SVM [17] and BIF + CCA [15] , are proposed for precise age esti-

ation. These approaches adopt handcrafted features ( i.e. BIF), and

owever they are difficult to obtain a rich representation of human

ace. 

To address this problem, several deep learning based meth-

ds are proposed for age estimation [23,27,28,34] . The most repre-

entative method is Deep Expectation (DEX) [27] model, which is

ased on the VGG16 structure and adopts an Expected Value (EV)

o calculate the final prediction. This method ranks the 1st place at

he CheaLeARN LAP challenge 2015. Rothe et al. then improve their

imple and elegant DEX method without using facial landmarks

nd decreased the MAE to 4.785 years on the CACD [4] dataset.

he champion [1] of the ChaLearn Lap challenge 2016 further im-

roves DEX method, by adding a separate model for the images

f children. Shen et al. [29] propose an end-to-end CNNs method

amed Deep Regression Forests (DRFs) for age estimation, which

earns nonlinear regression between heterogeneous facial feature

pace and ages. 

Ordinal information is used by Niu et al. [23] to reduce the MAE

o 3.63 years on the MORPH Album II, by adopting an end-to-end

eep model to address the ordinary regression problem. Similarly,

hen et al. [6] build multiple binary CNNs to learn the ordinal in-

ormation of ages, and the final result is the aggregation of these

inary CNN outputs. 

Multi-region methods. Gidaris et al. [12] propose a multi-

egion deep convolutional neural network for object detection, and

t achieves a very impressive detection result. This similar idea

s also adopted for age estimation using pre-partitioned facial re-

ions. Yi et al. [34] train 46 parallel CNNs with different facial sub-

egions, and such method successfully decreased the MAE to 3.63

ears on the MORPH Album II. After that, Ting et al. [22] try to
implify and improve [34] , but the improvement is not significant

s it ignores the differences among different sub-regions. 

Multi-task learning. Existing approaches [18,19] utilize at-

ribute correlation to enhance the performance of age estimation.

an et al. [19] propose a divide-and-conquer method, which takes

dvantage of gender and race attributes to improve the perfor-

ance of age estimation. Han et al. [18] design a Deep Multi-Task

earning method for both attribute correlation and attribute het-

rogeneity in a single neural network. Tian et al. [31] use orthogo-

alizing to calculate the attribute correlation between human gen-

er and age. 

In this paper, we combine the advantages of multi-region and

ulti-task learning methods as a new framework. However, these

wo type of methods cannot be heuristically combined due to their

omplex network structures. Therefore, we propose a specifically

esigned network and a training scheduling method to overcome

his barrier. 

. Attribute-Region association network 

In this section, we introduce the proposed attribute-region as-

ociation framework. Our pipeline is shown in Fig. 1 . We describe

ach stage of our framework in detail below. Besides, we introduce

 hierarchical scheduling training technique for multi-task learning.

.1. Face alignment 

Face alignment is of great importance to age estimation, as

t can eliminate irrelevant factors from facial images and reduce

he ambiguities from processing. Therefore, at the first stage in

ig. 1 we use active shape model [9] to locate the important fa-

ial points from the images. Then we crop and rotate the input

mage according to the center location of two eyes and the middle

oint of the upper lip. The regions of the eyes, nose and mouth

re then cropped and aligned according to the facial key points.

ll the cropped and aligned images are resized to 224 × 224. Simi-

ar to [23] , we use color face image as input. In addition, we follow

he setting of [8,27,30,34] that discard the face images which can-

ot be detected by a face detector. Some examples of the aligned

nd cropped images are presented in Fig. 2 . 

.2. Architecture 

To leverage the information from attribute-region association

earning, the proposed method consists of three sub-networks (see

ig 1 ). Each of them corresponds to the region of eye, nose, and

outh. Each sub-network takes a pair of images as input, i.e. , a

lobal face image and a sub-region image. Three softmax classi-

ers are connected to each sub-network for age estimation, gender

lassification and race recognition respectively. The outputs of each

ask are then combined in an ensemble layer, and this layer yields

 final output for a specific task. 

The proposed ARAN sub-networks are constructed based on

wo classical architecture: AlexNet and VGG-16 networks. The ex-

mple sub-network structure is shown in Fig. 3 . Besides, we also

dopt a single AlexNet or VGG-16 baseline model in our exper-

ments for better comparison. The detailed architectures of each

ub-network are discussed below. 

.2.1. Baseline network architecture 

To deploy our multi-task learning strategy, we slightly mod-

fy the original AlexNet structure. Our baseline network includes 5

onvolutional layers and 3 max pooling layers, where the first four

ayers are shared across different tasks. After that, the output from

onv4 layer is fed to three branches for three different tasks. Each

ranch contains an independent convolutional layer, a max pooling
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Fig. 1. Our attribute-region association framework. (Red: age estimation, blue: gender classification, green: race recognition.) 

Fig. 2. Results of face alignment. 

Fig. 3. The detailed architecture of a face + eye sub-network in ARAN. 
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layer and two fully connected layers. The last fully connected layer

of each branch is followed by a loss function for a specific task.

The original Alexnet includes three fully connected layers, but we

find that if our network contains only two fully connected layers, it

can reach a better performance for age estimation. Besides, in the

following experiments, our single-task baseline network is identi-

cal to our multi-task baseline architecture, but only one branch is

activated. 

3.2.2. ARAN Network architecture 

Our ARAN network is made up of three sub-networks. The input

of each sub-network is a pair of images with a holistic face and a

face component. These two images are fed to a sub-network. Each

sub-network is a variant of either Alexnet or VGG16. The differ-

ence between the multi-task baseline architecture and our ARAN

sub-network Fig. 3 is that our sub-network is a two-stream net-

work, and each input image is processed separately with two dif-

ferent set of network parameters. The outputs from two streams
re concatenated, and then they fed to three branches. Our ARAN

ramework with AlexNet architecture is trained from scratch, and

o pre-trained model is used in our experiments. Similarly, for our

RAN (VGG16) architecture which contains a very deep structure

ith smaller kernel size (3x3), it is pre-trained on the ImageNet

10] dataset, and fine-tuned on the MORPH Album II dataset in our

ollowing experiments. 

.3. Ensemble inference 

In Fig. 1 , the red block of softmax function is for age estimation

nd its cross entropy loss function is defined as: 

 A ge ( θ ) = −1 

n 

⎡ 

⎢ ⎣ 

n ∑ 

i =1 

u ∑ 

j=1 

1 

{
y ( i ) = j 

}
log 

e θ
T 
j 

x ( i ) 

u _ age ∑ 

l=1 

e θ
T 
l 

x ( i ) 

⎤ 

⎥ ⎦ 

, (1)
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Table 1 

The number of images in the three splits of the MORPH Album II dataset. 

Male Female 

Black S1:4012 S2:4012 S3:28835 S1:1305 S2:1305 S3:3166 

White S1:4012 S2:4012 S3:0 S1:1305 S2:1305 S3:0 

Other S1:0 S2:0 S3:1845 S1:0 S2:0 S3:130 
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1 http://www.cbsr.ia.ac.cn/users/dyi/agr.html . 
here θ is the parameter matrix of the softmax function; 1{ • } is

ndicator function, which means 1{a true statement} = 1; e 
θT 

j 
x ( i ) 

u ∑ 

l=1 

e 
θT 

l 
x ( i ) 

s the predicted probability distribution. Besides, every input sam-

le is represented as (x ( i ) , ( y ( i ) , g ( i ) , r ( i ) )) and x ( i ) indicates the fea-

ures of the i-th sample, and x ( i ) ∈ R n . y ( i ) is the age label of the

 th sample, g ( i ) is the gender label of the i th sample and r ( i ) is the

ace label of the i-th sample. u _ age is the class numbers for our

ge prediction. Similarly, the blue and green blocks of the softmax

unctions are used for gender classification and race classification

espectively, and their corresponding loss functions are Eqs. (2)

nd (3) . 

 G ender ( θ ) = −1 

n 

⎡ 

⎢ ⎢ ⎣ 

n ∑ 

i =1 

u ∑ 

j=1 

1 

{
g ( i ) = j 

}
log 

e θ
T 
j 

x ( i ) 

u _ gender ∑ 

l=1 

e θ
T 
l 

x ( i ) 

⎤ 

⎥ ⎥ ⎦ 

. (2) 

 R ace ( θ ) = −1 

n 

⎡ 

⎢ ⎣ 

n ∑ 

i =1 

u ∑ 

j=1 

1 

{
r ( i ) = j 

}
log 

e θ
T 
j 

x ( i ) 

u _ race ∑ 

l=1 

e θ
T 
l 

x ( i ) 

⎤ 

⎥ ⎦ 

. (3) 

Therefore, our objective function of each sub-network is defined

s: 

 all ( θ ) = αl Age ( θ ) + β l Gender ( θ ) + γ l Race ( θ ) , (4) 

here α, β and γ are the loss weights of their own loss functions

age estimation, gender classification, and ethnicity recognition re-

pectively). In our experiments, α, β and γ are set to 1, 0.1 and 0.1,

espectively. We also have a brief discussion about different com-

inations of the loss weights in our experiment section. 

For the age prediction sub-network, the metric Expected Value

27] is widely adopted to calculate the predicted age. The predicted

ge of P k in Eq. (5) from each softmax function of the sub-network

s 
∑ 100 

i =0 p i i , where p i is the predicting probability of the corre-

ponding age i . Its subindex i ranges from 0 to 100, as our softmax

unction is a hundred-and-one-dimensional vector [22,28,30,34] .

inally, three predicted ages are combined in the age ensemble

unction: 

 age = 

m ∑ 

k =1 

W k P k,age , (5) 

here W k is the weight for each sub-network k and m is defined

s the number of the sub-regions. Afterwards we combine the pre-

ictions of three sub-networks and get a final prediction P age . 

For gender and ethnicity predictions, both of them are binary

lassifications in our experiments. Unlike age predictions, an inte-

er value is required for evaluating these two tasks, therefore in

ere we use a rounding approach. Their own softmax outputs are

wo numbers which can indicate the accuracies of our prediction.

herefore, the class of higher accuracy is our predicted gender or

ace. Subsequently, both tasks go through their individual ensem-

le layers, and their predictions are combined respectively accord-

ng to the following function: 

 gender,race = round 

( 

1 

m 

m ∑ 

k =1 

P k,gender,race 

) 

. (6) 

.4. Hierarchical scheduling 

Apparently, age estimation task is far more difficult than gen-

er classification and ethnicity recognition. As shown in Fig. 4 , the

AE of age estimation (red curve) requires a large number of itera-

ions to converge, while the gender classification and the ethnicity
ecognition (purple and green curves) take a few iterations to get

he highest accuracies. If the other two tasks have converged and

he age estimation task still requires further training, the overfit-

ed gender and ethnicity tasks may prevent age estimation from

raining towards optimum performance. Therefore, we introduce a

ierarchical scheduling training method to ease the burden of un-

alanced multi-task learning. 

Our method is divided into two stages. Firstly, we pre-trained

ur network for the age estimation task independently. In other

ords, the branches of the gender classification and ethnicity

ecognition are not updated during the pre-training period. Partic-

larly, the shared layers across tasks do not update in pre-training.

uring the second stage, we only keep the parameters from the

hared layers of the pre-trained network, and the rest of layers

re initialized by random gaussian distribution. As can be seen in

ig. 3 , we keep the pre-trained parameters of shared convolutional

ayers for initialization in the second stage. After that, we finetune

ur pre-trained network for all the three tasks. 

In this way, the difficult age estimation task is individually pre-

rained first, which mitigates the learning ambiguities of learning

hree tasks simultaneously. Furthermore, these three tasks share

imilar mid-level and high-level knowledge of human face, and

he pre-trained shared layers learn rich representations of differ-

nt face attributes, and thus boost the performance of all the three

asks. 

. Experiments 

.1. Experimental setup 

In our experiments, the proposed framework is evalu-

ted mainly on the MORPH Album II [26] , FG-NET [21] and

ACD [4] datasets. Both datasets are public popular datasets for

uman face age estimation. We use a learning rate of 0.0 0 01, a

eight decay of 0.0 0 05 and a momentum of 0.9. 

MORPH Album II contains approximately 55,0 0 0 face images

nd their ages range from 16 to 77 years. CACD is the biggest pub-

ic cross-age dataset and it is collected from the Internet Movie

ataBase (IMDB). Besides, FG-NET contains 1002 facial images of

2 individuals and CACD includes more than 160 thousands images

f 20 0 0 celebrities. 

MORPH Album II is the only dataset that contains age, gen-

er and race attributes. According to the age, gender and race

istributions of MORPH Album II in [32] , the dataset contains

pproximately 77% black and 19% white, while the corresponding

ercentage for the gender is 15% female and 85% male. Since

ORPH Album II is highly unbalanced in terms of race and gender

istribution, we follow [13,29,34] to use the same test protocols 1 

rovided by Yi et al. [34] . The dataset is randomly partitioned

nto three non-overlapped subsets S1, S2 and S3. Therefore, there

re two different combinations of training set and testing set: 1)

raining set is S1, and testing sets are S2 + S3; 2) Training set is S2,

nd testing sets are S1 + S3. For multi-task learning, we discard the

mages with non-black and non-white races (“other” in Table 1 ),

ecause our ethnicity recognition is only for white and black faces.

http://www.cbsr.ia.ac.cn/users/dyi/agr.html
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Fig. 4. The training processing without HST technique on the Morph Album II dataset (Training Set: S1, Testing Set: S2 + S3). 
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As a result, the filtered test set contains 42,635 samples, and the

number of samples in the train set remains the same. 

For FG-NET datast, we manually annotate gender and ethnic la-

bels on this dataset. In our experiments, we follow the testing set-

ting used in [3,5,33] , and we perform “leave one out” cross vali-

dation on FG-NET dataset. In other word, we leave images of one

person for testing and take the remaining images for training. 

As the CACD dataset images are collected from IMDB, which

introduces noise labels to the dataset. We follow the setting

of [30] to use 200 celebrities that with less noise for testing, and

the other for training in our experiments. Due to the lack of gender

and race attributes, CACD dataset is only used for our single-task

evaluations. 

As discussed in Section 3.1 , we crop the regions from the

human face and all the non-face images are removed from the

dataset. After this operation, MORPH Album II includes 55,244 im-

ages, and CACD contains 162,941 images [30] . 

To avoid overfitting on the MORPH Album II dataset, we aug-

ment the training images by flipping, rotating with ± 8 o and ±
5 o , and adding Gaussian white noises with variance of 0.0 01, 0.0 05,

0.01, 0.015 and 0.02. 

4.2. Evaluation metrics 

In our experiments, we adopt Mean Absolute Error (MAE) and

cumulative score (CS) as the evaluation criteria of age estimation

[17] . For gender classification and ethnicity recognition, we only

compute their accuracies. MAE is defined as: 

MAE = 

1 

N 

N ∑ 

t=1 

| � y i − y i | , (7)

where N denotes the number of testing samples. � 

y i 
and y i are the

ground truth age and predicted age of the k-th image respectively.

The lower the MAE, the better the estimation performance. CS is

defined as: 

S( j) = 

N e ≤ j × 100% , (8)

N 
here N e ≤ j denotes the number of testing images whose absolute

rror between the ground truth age and the predicted age is more

han j years. On the contrary to MAE, a higher CS value indicates

he better result. 

.3. Multi-region evaluation 

We take age estimation task as an example, by setting the

earning rate of the other two branches to zero, to show the per-

ormance of our ARAN on single task learning. 

.3.1. Relation between regions and age groups 

We investigate the performance of age estimation among dif-

erent single-region networks, which are based on our single-task

aseline architecture on the Morph Album II dataset (training set:

1, testing set: S2). The results are shown in Fig. 5 a. We can see

hat the global face outperforms the other regions significantly,

nd other regions get bad performances on their own. Besides,

e also show the age estimation performances of different multi-

egion networks on the Morph Album II (training set: S1, testing

et: S2) and CACD datasets. We can see in Fig. 5 b and c that the

erformance of a single-face net is close to a Face + LeftEye net, a

ace + Nose net or a Face + Mouth net on both datasets. Surprisingly,

or these four networks, each of them can outperform others at

ome ages, and these ages are different between two datasets. It is

ifficult to say which region is benefit to some ages all the time for

ifferent datasets. Hence, we adopt a simple method to ensemble

he networks by calculating their average value. We can see that

or the Morph Album II dataset, there are only about 100 samples

xisting at the range from 55 to 60, and therefore we can consider

ingle-task ARAN (AlexNet) almost outperforms other networks at

ll ages on both datasets. 

.3.2. Evaluation on the importance of regions 

Here we show the importance of different regions. We can see

rom Table. 2 , it shows that our results are relatively stable w.r.t

ifferent weights in a reasonable range (around 1/3), which in-

icates that their combination strategies are not sensitive to the
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Fig. 5. Age estimation evaluations with different settings: (a) Single region nets at different testing ages on the Morph Album II dataset. (b) Multi-region nets at different 

testing ages on the Morph Album II dataset. (c) Multi-region nets at different testing ages on the CACD dataset. 

Table 2 

Different ARAN (AlexNet) ensemble methods based on the CACD and Morph Album 

II (Training set: S1) datasets. 

Face + LeftEye Face + 

Nose 

Face + 

Mouth 

CACD 

MAE ↓ 
MOR. Alb. 

II MAE ↓ 
1 0 0 5.12 3.25 

0 1 0 5.11 3.25 

0 0 1 5.08 3.48 

1/3 1/3 1/3 4.85 3.04 

1/2 1/3 1/6 4.87 3.04 

1/2 1/6 1/3 4.87 3.05 

1/3 1/2 1/6 4.86 3.05 

1/3 1/6 1/2 4.86 3.08 

1/6 1/2 1/3 4.86 3.07 

1/6 1/3 1/2 4.86 3.10 

Fig. 6. Evaluation on the number of regions. 
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F  
ombination parameters. The best parameters set is 1/3, 1/3 and

/3 (averaging). Especially on CACD, the differences between differ-

nt combinations are no more than 0.02. Though the results of the

orph Album II dataset is not as stable as CACD, but the difference

s very small and the best performance is still around 1/3. There-

ore, in our experiment, the averaging ensemble is very suitable for

he ensemble weighting coefficients W k of our ARAN framework. 

.3.3. Evaluation on the number of regions 

We also investigate the influence of increasing or decreasing

ub-regions with our single-task baseline architecture. Our base-

ine structure only adopt left eye, nose and mouth as sub-regions

n our experiments. Fig. 6 illustrates that our framework does not

et a significant improvement if we add the sub-regions like the
lobal face or the right eye. The reason may be these regions are

ery similar to our adopted regions. However, if we decrease one of

he regions we adopted, the performance drops dramatically to no

ess than 3.07 years. Therefore, the eyes, the noses and the mouths

re very important for our framework. A better performance may

e achieved if we can get more unique face information, like ears

nd hairs (they cannot be obtained using face landmark). Besides,

e can see that the global face is the most important feature, and

t cannot be removed from the pipeline. 

.4. Evaluation on the attribute-Region association network 

We evaluate the proposed attribute-region association frame-

ork only on the Morph Album II dataset, as the other datasets

o not contain age, gender, race labels at the same time. Our

ttribute-region association sub-network is built on Fig. 3 for

lexNet version and VGG16 version respectively. ARAN (AlexNet)

s directly trained form the training set of the Morph Album II

ataset, while the VGG16 version is pre-trained with ImageNet

10] . In Table 3 , we compare our ARAN frameworks and some

aseline architectures. Comparing with the results between ARAN

AlexNet) and single-task methods (based on modified AlexNet),

e can find that ARAN (AlexNet) method can hugely improve the

erformance of age estimation and slightly increase the accuracy

f ethnicity recognition. The MAE value is improved from 3.20

o 2.96. Moreover, it is noticeable that our multi-task baseline

etwork has a slight decrease (0.02) compared with the single-

ask baseline network, and therefore our ARAN (AlexNet) provides

ore help for the multi-task learning networks. Besides, the per-

ormance of gender classification and ethnicity recognition also

ave a slight increase from our multi-task baseline from ARAN

AlexNet). Though there is still a slight difference on gender clas-

ification between our ARAN (AlexNet) and the single task, our

RAN (AlexNet) framework can significantly enhance the perfor-

ance of the most difficult task (age estimation). For our VGG-16

ersion, it outperforms all the methods on three tasks, and further

mproves the performance of age estimation to 2.63. 

.5. Comparison with the state-of-the-arts 

In order to show the effectiveness of our method, we compare

ur methods with other state-of-the-art algorithms on the Morph

lbum II and FG-NET dataset. 

For Morph Album II, the results are summarized in Table 4 and

ig. 7 . Similar to previous works [8,19] , we adopt the mirroring
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Table 3 

Comparisons with the baseline methods on the Morph Album II dataset. Single task methods are based on our sinlge-task baseline 

architecture. 

Architecture Train Set Test Set Gender Acc. Race Acc. Age MAE ↓ 
Age (Single task) S1 S1 + S3 – – 3.34 

S2 S1 + S3 – – 3.05 

Average – – 3.20 

Gender (Single Task) S1 S2 + S3 98.94% – –

S2 S1 + S3 98.99% – –

Average 98.97% – –

Race (Single Task) S1 S2 + S3 – 99.02% –

S2 S1 + S3 – 99.13% –

Average – 99.08% –

Baseline (Multi-task) S1 S2 + S3 98.58% 99.33% 3.40 

S2 S1 + S3 98.83% 99.26% 3.03 

Average 98.71% 99.30% 3.22 

Face + LeftEye (AlexNet) S1 S2 + S3 98.59% 99.17% 3.39 

S2 S1 + S3 98.72% 99.30% 3.04 

Average 98.66% 99.24% 3.22 

Face + Nose (AlexNet) S1 S2 + S3 98.59% 99.17% 3.46 

S2 S1 + S3 98.72% 99.30% 3.03 

Average 98.66% 99.24% 3.25 

Face + Mouth (AlexNet) S1 S2 + S3 98.58% 99.12% 3.72 

S2 S1 + S3 98.75% 99.26% 3.29 

Average 98.67% 99.19% 3.51 

Face + LeftEye + Nose + Mouth S1 S2 + S3 – – 3.43 

S2 S1 + S3 – – 3.13 

Average – – 3.28 

ARAN (AlexNet) S1 S2 + S3 98.81% 99.27% 3.15 

S2 S1 + S3 98.92% 99.37% 2.76 

Average 98.87% 99.32% 2.96 

Face + LeftEye (VGG16) S1 S2 + S3 98.20% 99.02% 2.96 

S2 S1 + S3 98.62% 98.97% 2.70 

Average 98.41% 99.00% 2.83 

Face + Nose (VGG16) S1 S2 + S3 98.63% 98.60% 2.98 

S2 S1 + S3 98.64% 99.22% 2.67 

Average 98.64% 98.91% 2.83 

Face + Mouth (VGG16) S1 S2 + S3 98.15% 99.05% 2.96 

S2 S1 + S3 98.67% 98.95% 2.75 

Average 98.41% 99.00% 2.86 

ARAN (VGG16) S1 S2 + S3 99.03% 99.14% 2.77 

S2 S1 + S3 98.94% 99.22% 2.48 

Average 98.99% 99.18% 2.63 

∗ Bold and italic fonts indicate the #1 and #2 performances. 

Fig. 7. CS curves based on the Morph II dataset. 
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Table 4 

Comparisons with the state-of-the-art methods on the Morph Album II dataset. 

Architecture Train Set Test Set Gender Acc. Race Acc. Age MAE ↓ 
BIF + KCCA [15] S1 S1 + S3 98.5% 98.9% 4.00 

S2 S1 + S3 98.4% 99.0% 3.95 

Average 98.5% 99.0% 3.98 

BIF + KPLS [14] S1 S2 + S3 98.4% 99.0% 4.07 

S2 S1 + S3 98.3% 99.0% 4.01 

Average 98.4% 99.0% 4.04 

Soft Softmax a [30] S1 S2 + S3 – – 3.14 

S2 S1 + S3 – – 2.92 

Average – – 3.03 

Multi-scale CNN 

b [34] S1 S2 + S3 98.0% 99.1% 3.63 

S2 S1 + S3 97.8% 98.1% 3.63 

Average 97.9% 98.6% 3.63 

Net VGG 
H ybrid 

a [32] S1 S2 + S3 – – 2.96 

S2 S1 + S3 – – 2.95 

Average 98.7% 99.2% 2.96 

RaceGender2Age a [19] (VGG16) S1 S2 + S3 98.23% 97.78% 3.15 

S2 S1 + S3 98.70% 97.99% 2.84 

Average 98.47% 97.89% 2.99 

Fused Method a [19] (AlexNet) S1 S2 + S3 – – 3.25 

S2 S1 + S3 – – 3.05 

Average – – 3.15 

Fused Method a [19] (VGG16) S1 S2 + S3 – – 3.09 

S2 S1 + S3 – – 2.81 

Average – – 2.95 

DRFs [29] S1 S2 + S3 – – –

S2 S1 + S3 – – –

Average – – 2.98 

ARAN (AlexNet) S1 S2 + S3 98.81% 99.27% 3.15 

S2 S1 + S3 98.92% 99.37% 2.76 

Average 98.87% 99.32% 2.96 

ARAN + MP b (AlexNet) S1 S2 + S3 98.81% 99.27% 3.11 

S2 S1 + S3 98.92% 99.37% 2.72 

Average 98.87% 99.32% 2.92 

ARAN (VGG16) S1 S2 + S3 99.03% 99.14% 2.77 

S2 S1 + S3 98.94% 99.22% 2.48 

Average 98.99% 99.18% 2.63 

ARAN + MP b (VGG16) S1 S2 + S3 99.03% 99.14% 2.75 

S2 S1 + S3 98.94% 99.22% 2.45 

Average 98.99% 99.18% 2.60 

a The IMDB-WIKI database [27] was used for network pre-training. 
b Adopting mirroring prediction techniques [8] in testing. 
∗ Bold and italic fonts indicate the #1 and #2 performances. 
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Table 5 

Comparisons with the state-of-the-art methods on the FG-NET dataset. 

Methods Age MAE ↓ CS ↑ 
CA-SVR 4.67 74.5% 

OHRank 4.48 74.4% 

CAM 4.12 73.5% 

DEX 4.63 N/A 

DRFs 3.85 80.6% 

ARAN (AlexNet) 3.79 81.0% 

a  

f

4

 

t  

m  

r  

w  

e  
rediction (MP) technique in our experiments, and it is only used

or age estimation. Besides, most approaches use the Morph Al-

um II dataset tend to pretrain their networks using the IMDB-

IKI dataset [27] , which is a much larger dataset than the Morph

lbum II dataset. We train on a smaller dataset, but the proposed

ethod show superior performance than the state-of-the-art ap-

roaches with a considerable margin. In Table 4 , there is no doubt

hat our methods outperform the state-of-the-art traditional meth-

ds [14,15] . In terms of deep model methods, both of our network

tructures still outperform these methods. For instance, the fused

ethod [19] (VGG16), which is fused with five cascaded structure

rameworks, reduces the MAE of Morph Album II to 2.95, while our

GG16 framework boost the record to 2.63 under the same test-

ng protocol without using IMDB-WIKI for pre-training. The mirror-

ng prediction brings not significant improvement of approximately

.03 or 0.04 for age estimation. The cumulative score (CS) curves

n Fig. 7 show similar results. Our methods also outperforms all

he state-of-the-art methods with a significant margin from CS1 to

S20. 

For FG-NET, The quantitative comparisons are demonstrated in

able 5 . We do not show our performances of gender and race,

ecause the results are very close to 100%. As can be seen, ARAN
chieves the state-of-the-art result with 3.79 MAE and 81.0% CS. It p  
lso illustrates that our ARAN can learn attribute-region association

rom a small dataset. 

.6. Evaluation on the hierarchical scheduling 

We investigate the improvement of hierarchical scheduling

raining (HST) method and perform the experiments based on our

ulti-task baseline architecture on Morph Album II dataset. The

esults of the experiments are shown in Fig. 8 and Fig. 9 . Firstly,

e can see from Fig. 9 that compared with Fig. 4 , HST can prevent

arly convergence of the ethnic and the gender tasks, and therefore

revent the age task from stacking in a local minimum. The high-
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Fig. 8. Results of the improvement of HST on the Morph Album II dataset. 

Fig. 9. The training processing with HST technique on the Morph Album II dataset (Training Set: S1, Testing Set: S2 + S3). 
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c  
est MAE point of HST method is around 60 0 0th iteration, while the

corresponding iteration in regular method is around 26,0 0 0th iter-

ation. And the tasks of gender classification and ethnicity recogni-

tion remain the same trend in Figs. 4 and 9 , which remain stable

at around 20 0 0th iteration. The Fig. 8 shows that our HST method

greatly increases the performance of our multi-task learning. For

instance, compared with the result in Fig. 4 , the MAE of our

multi-task baseline is improved by 0.13. Even for the single task of

age estimation, our HST method can enhance the result from 3.20

to 3.09. Noticeably, owing to the drop of the testing samples, our

result experience a small setback from 3.16 to 3.20 compared with

the result of age estimation in [8] , and however our method still

can greatly improve the performance. For ARAN (AlexNet), our HST

method successfully boosts the result to 2.87. With the helping of

mirroring technique, our ARAN (VGG-16) achieves its lowest figure

2.51 MAE in Fig. 8 . Though our HST method slightly reduces the

performance (about 0.2%) of gender classification and ethnicity

recognition, our method can greatly enhance performance the

most difficult task (age estimation) in our method. Therefore, it
 s  
an be argued that our hierarchical scheduling training is very

elpful for age estimation in multi-task learning. 

.7. Evaluation on the loss functions in multi-task learning 

In this section, we briefly discuss the influence of different

eight combinations of loss function in multi-task learning. We

onduct this experiment based on our multi-task baseline archi-

ecture on Morph Album II dataset. According to Eq. (4) , we can

et different weight for different loss function in multi-task learn-

ng, but it is very hard to find out a best combination for each

oss function. In our experiment, we adopt a similar idea with our

ierarchical scheduling training. We try to make our network pay

ore attention to age estimation which is the most difficult task,

nd slow down their speed of the convergence. In Fig. 4 , we can

ee that the gender classification is hard to converge than the eth-

icity, so we also try to assign a higher weight to gender classifi-

ation, and a lower weight to ethnicity recognition. The results are

hown in Fig. 10 . We can see that if β and γ contain a same loss
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Fig. 10. Comparisons with different weight combination of loss function in attribute-Region association learning on the Morph Album II dataset (Training Set: S1, Testing 

Set: S2 + S3). 
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eight with α, our performance of age estimation is dropped con-

iderably. By contrast, if β and γ contain a very small loss weight,

ur performance of age estimation is increased significantly, and

he MAE is even higher than the MAE of single-task baseline ar-

hitecture. However, if loss weight of β and γ are too low, the

erformance of gender classification is also decreased dramatically.

herefore, in our experiments, we assign 1, 0.1 and 0.1 to α, β and

so as to achieve a good compromise. 

. Conclusion 

In this paper, we present an Attribute-Region Association Net-

ork (ARAN) for age estimation by learning the association of the

ace attributes and components. To this end, we design a novel

ramework which adopts different critical regions from the human

ace and combines different demographic information together in

n unified network. Our framework balances and takes full ad-

antage of these regions and demographic information for accu-

ate prediciton. Extensive experiments show the proposed method

utperforms existing state-of-the-art methods by a significant mar-

in on the Morph Album II dataset. Also, we propose a hierarchi-

al scheduling training method to address the complexity unbal-

ncing problem in multi-task learning. Together with the proposed

cheduling method, we achieve the highest performance of age es-

imation on the Morph Album II dataset. Our further research may

ocus on transferring the age knowledge to other face attributes

ecognition with one-shot or few-shot learning. 
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